skip to main content

Title: WISH: wavefront imaging sensor with high resolution
Abstract

Wavefront sensing is the simultaneous measurement of the amplitude and phase of an incoming optical field. Traditional wavefront sensors such as Shack-Hartmann wavefront sensor (SHWFS) suffer from a fundamental tradeoff between spatial resolution and phase estimation and consequently can only achieve a resolution of a few thousand pixels. To break this tradeoff, we present a novel computational-imaging-based technique, namely, the Wavefront Imaging Sensor with High resolution (WISH). We replace the microlens array in SHWFS with a spatial light modulator (SLM) and use a computational phase-retrieval algorithm to recover the incident wavefront. This wavefront sensor can measure highly varying optical fields at more than 10-megapixel resolution with the fine phase estimation. To the best of our knowledge, this resolution is an order of magnitude higher than the current noninterferometric wavefront sensors. To demonstrate the capability of WISH, we present three applications, which cover a wide range of spatial scales. First, we produce the diffraction-limited reconstruction for long-distance imaging by combining WISH with a large-aperture, low-quality Fresnel lens. Second, we show the recovery of high-resolution images of objects that are obscured by scattering. Third, we show that WISH can be used as a microscope without an objective lens. Our study suggests more » that the designing principle of WISH, which combines optical modulators and computational algorithms to sense high-resolution optical fields, enables improved capabilities in many existing applications while revealing entirely new, hitherto unexplored application areas.

« less
Authors:
; ;
Award ID(s):
1652633
Publication Date:
NSF-PAR ID:
10153497
Journal Name:
Light: Science & Applications
Volume:
8
Issue:
1
ISSN:
2047-7538
Publisher:
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    There is a long history of using angle sensors to measure wavefront. The best example is the Shack-Hartmann sensor. Compared to other methods of wavefront sensing, angle-based approach is more broadly used in industrial applications and scientific research. Its wide adoption is attributed to its fully integrated setup, robustness, and fast speed. However, there is a long-standing issue in its low spatial resolution, which is limited by the size of the angle sensor. Here we report a angle-based wavefront sensor to overcome this challenge. It uses ultra-compact angle sensor built from flat optics. It is directly integrated on focal plane array. This wavefront sensor inherits all the benefits of the angle-based method. Moreover, it improves the spatial sampling density by over two orders of magnitude. The drastically improved resolution allows angle-based sensors to be used for quantitative phase imaging, enabling capabilities such as video-frame recording of high-resolution surface topography.

  2. Acousto-optic imaging (AOI) enables optical-contrast imaging deep inside scattering samples via localized ultrasound-modulation of scattered light. While AOI allows optical investigations at depths, its imaging resolution is inherently limited by the ultrasound wavelength, prohibiting microscopic investigations. Here, we propose a computational imaging approach that allows optical diffraction-limited imaging using a conventional AOI system. We achieve this by extracting diffraction-limited imaging information from speckle correlations in the conventionally detected ultrasound-modulated scattered-light fields. Specifically, we identify that since “memory-effect” speckle correlations allow estimation of the Fourier magnitude of the field inside the ultrasound focus, scanning the ultrasound focus enables robust diffraction-limited reconstruction of extended objects using ptychography (i.e., we exploit the ultrasound focus as the scanned spatial-gate probe required for ptychographic phase retrieval). Moreover, we exploit the short speckle decorrelation-time in dynamic media, which is usually considered a hurdle for wavefront-shaping- based approaches, for improved ptychographic reconstruction. We experimentally demonstrate noninvasive imaging of targets that extend well beyond the memory-effect range, with a 40-times resolution improvement over conventional AOI.

  3. Abstract

    Multidimensional photography can capture optical fields beyond the capability of conventional image sensors that measure only two-dimensional (2D) spatial distribution of light. By mapping a high-dimensional datacube of incident light onto a 2D image sensor, multidimensional photography resolves the scene along with other information dimensions, such as wavelength and time. However, the application of current multidimensional imagers is fundamentally restricted by their static optical architectures and measurement schemes—the mapping relation between the light datacube voxels and image sensor pixels is fixed. To overcome this limitation, we propose tunable multidimensional photography through active optical mapping. A high-resolution spatial light modulator, referred to as an active optical mapper, permutes and maps the light datacube voxels onto sensor pixels in an arbitrary and programmed manner. The resultant system can readily adapt the acquisition scheme to the scene, thereby maximising the measurement flexibility. Through active optical mapping, we demonstrate our approach in two niche implementations: hyperspectral imaging and ultrafast imaging.

  4. In this paper, we have used the angular spectrum propagation method and numerical simulations of a single random phase encoding (SRPE) based lensless imaging system, with the goal of quantifying the spatial resolution of the system and assessing its dependence on the physical parameters of the system. Our compact SRPE imaging system consists of a laser diode that illuminates a sample placed on a microscope glass slide, a diffuser that spatially modulates the optical field transmitting through the input object, and an image sensor that captures the intensity of the modulated field. We have considered two-point source apertures as the input object and analyzed the propagated optical field captured by the image sensor. The captured output intensity patterns acquired at each lateral separation between the input point sources were analyzed using a correlation between the captured output pattern for the overlapping point-sources, and the captured output intensity for the separated point sources. The lateral resolution of the system was calculated by finding the lateral separation values of the point sources for which the correlation falls below a threshold value of 35% which is a value chosen in accordance with the Abbe diffraction limit of an equivalent lens-based system. A directmore »comparison between the SRPE lensless imaging system and an equivalent lens-based imaging system with similar system parameters shows that despite being lensless, the performance of the SRPE system does not suffer as compared to lens-based imaging systems in terms of lateral resolution. We have also investigated how this resolution is affected as the parameters of the lensless imaging system are varied. The results show that SRPE lensless imaging system shows robustness to object to diffuser-to-sensor distance, pixel size of the image sensor, and the number of pixels of the image sensor. To the best of our knowledge, this is the first work to investigate a lensless imaging system’s lateral resolution, robustness to multiple physical parameters of the system, and comparison to lens-based imaging systems.

    « less
  5. We report a novel lensless on-chip microscopy platform based on near-field blind ptychographic modulation. In this platform, we place a thin diffuser in between the object and the image sensor for light wave modulation. By blindly scanning the unknown diffuser to different x – y positions, we acquire a sequence of modulated intensity images for quantitative object recovery. Different from previous ptychographic implementations, we employ a unit magnification configuration with a Fresnel number of ∼50 000, which is orders of magnitude higher than those of previous ptychographic setups. The unit magnification configuration allows us to have the entire sensor area, 6.4 mm by 4.6 mm, as the imaging field of view. The ultra-high Fresnel number enables us to directly recover the positional shift of the diffuser in the phase retrieval process, addressing the positioning accuracy issue plaguing regular ptychographic experiments. In our implementation, we use a low-cost, DIY scanning stage to perform blind diffuser modulation. Precise mechanical scanning that is critical in conventional ptychography experiments is no longer needed in our setup. We further employ an up-sampling phase retrieval scheme to bypass the resolution limit set by the imager pixel size and demonstrate a half-pitch resolution of 0.78 μm. We validatemore »the imaging performance via in vitro cell cultures, transparent and stained tissue sections, and a thick biological sample. We show that the recovered quantitative phase map can be used to perform effective cell segmentation of a dense yeast culture. We also demonstrate 3D digital refocusing of the thick biological sample based on the recovered wavefront. The reported platform provides a cost-effective and turnkey solution for large field-of-view, high-resolution, and quantitative on-chip microscopy. It is adaptable for a wide range of point-of-care-, global-health-, and telemedicine-related applications.« less