skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: NeuWS: Neural wavefront shaping for guidestar-free imaging through static and dynamic scattering media
Diffraction-limited optical imaging through scattering media has the potential to transform many applications such as airborne and space-based imaging (through the atmosphere), bioimaging (through skin and human tissue), and fiber-based imaging (through fiber bundles). Existing wavefront shaping methods can image through scattering media and other obscurants by optically correcting wavefront aberrations using high-resolution spatial light modulators—but these methods generally require (i) guidestars, (ii) controlled illumination, (iii) point scanning, and/or (iv) statics scenes and aberrations. We propose neural wavefront shaping (NeuWS), a scanning-free wavefront shaping technique that integrates maximum likelihood estimation, measurement modulation, and neural signal representations to reconstruct diffraction-limited images through strong static and dynamic scattering media without guidestars, sparse targets, controlled illumination, nor specialized image sensors. We experimentally demonstrate guidestar-free, wide field-of-view, high-resolution, diffraction-limited imaging of extended, nonsparse, and static/dynamic scenes captured through static/dynamic aberrations.  more » « less
Award ID(s):
1730574
PAR ID:
10493065
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Science Advances
Date Published:
Journal Name:
Science Advances
Volume:
9
Issue:
26
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Acousto-optic imaging (AOI) enables optical-contrast imaging deep inside scattering samples via localized ultrasound-modulation of scattered light. While AOI allows optical investigations at depths, its imaging resolution is inherently limited by the ultrasound wavelength, prohibiting microscopic investigations. Here, we propose a computational imaging approach that allows optical diffraction-limited imaging using a conventional AOI system. We achieve this by extracting diffraction-limited imaging information from speckle correlations in the conventionally detected ultrasound-modulated scattered-light fields. Specifically, we identify that since “memory-effect” speckle correlations allow estimation of the Fourier magnitude of the field inside the ultrasound focus, scanning the ultrasound focus enables robust diffraction-limited reconstruction of extended objects using ptychography (i.e., we exploit the ultrasound focus as the scanned spatial-gate probe required for ptychographic phase retrieval). Moreover, we exploit the short speckle decorrelation-time in dynamic media, which is usually considered a hurdle for wavefront-shaping- based approaches, for improved ptychographic reconstruction. We experimentally demonstrate noninvasive imaging of targets that extend well beyond the memory-effect range, with a 40-times resolution improvement over conventional AOI. 
    more » « less
  2. Focusing light through turbid media using wavefront shaping generally requires a noninvasive guide star to provide feedback on the focusing process. Here we report a photoacoustic guide star mechanism suitable for wavefront shaping through a scattering wall that is based on the fluctuations in the photoacoustic signals generated in a micro-vessel filled with flowing absorbers. The standard deviation of photoacoustic signals generated from random distributions of particles is dependent on the illumination volume and increases nonlinearly as the illumination volume is decreased. We harness this effect to guide wavefront shaping using the standard deviation of the photoacoustic response as the feedback signal. We further demonstrate sub-acoustic resolution optical focusing through a diffuser with a genetic algorithm optimization routine. 
    more » « less
  3. Imaging through scattering media is a fundamental and pervasive challenge infields ranging from medical diagnos-tics to astronomy. A promising strategy to overcome this challenge is wavefront modulation, which induces measure-ment diversity during image acquisition. Despite its importance, designing optimal wavefront modulations to image through scattering remains under-explored. This paper in-troduces a novel learning-based framework to address the gap. Our approach jointly optimizes wavefront modulations and a computationally lightweight feedforward “proxy” re-construction network. This network is trained to recover scenes obscured by scattering, using measurements that are modified by these modulations. The learned modulations produced by our framework generalize effectively to un-seen scattering scenarios and exhibit remarkable versatility. During deployment, the learned modulations can be decou-pled from the proxy network to augment other more computationally expensive restoration algorithms. Through ex-tensive experiments, we demonstrate our approach signifi-cantly advances the state of the art in imaging through scat-tering media. 
    more » « less
  4. Second harmonic generation (SHG) microscopy is a valuable tool for optical microscopy. SHG microscopy is normally performed as a point scanning imaging method, which lacks phase information and is limited in spatial resolution by the spatial frequency support of the illumination optics. In addition, aberrations in the illumination are difficult to remove. We propose and demonstrate SHG holographic synthetic aperture holographic imaging in both the forward (transmission) and backward (epi) imaging geometries. By taking a set of holograms with varying incident angle plane wave illumination, the spatial frequency support is increased and the input and output pupil phase aberrations are estimated and corrected – producing diffraction limited SHG imaging that combines the spatial frequency support of the input and output optics. The phase correction algorithm is computationally efficient and robust and can be applied to any set of measured field imaging data. 
    more » « less
  5. Abstract Metalenses, with their ultrathin thicknesses and their ease for achieving ultra small diameters, offer a promising alternative to refractive lenses in miniaturized imaging systems, such as endoscopes, potentially enabling applications in tightly confined spaces. However, traditional metalenses suffer from strong chromatic aberrations, limiting their utility in multi-color imaging. To address this limitation, here we present an inverse-designed polychromatic metalens with a diameter of 680 μm, focal length of 400 μm, and low dispersion across 3 distinct wavelengths at 643 nm, 532 nm, and 444 nm. The metalens collimates and steers light emitted from a scanning fiber tip, generating scanning beams across a 70° field-of-view to provide illumination for a scan-based imaging. The metalens provides a close-to-diffraction-limited 0.5° angular resolution, only restricted by the effective aperture of the system. The average relative efficiency among three design wavelengths is around 32% for on-axis angle and 13% averaged across the entire field-of-view. This work holds promise for the application of metalenses in endoscopes and other miniaturized imaging systems. 
    more » « less