skip to main content


Title: Plasmonic metasurfaces with 42.3% transmission efficiency in the visible
Abstract

Metasurfaces are two-dimensional nanoantenna arrays that can control the propagation of light at will. In particular, plasmonic metasurfaces feature ultrathin thicknesses, ease of fabrication, field confinement beyond the diffraction limit, superior nonlinear properties, and ultrafast performances. However, the technological relevance of plasmonic metasurfaces operating in the transmission mode at optical frequencies is questionable due to their limited efficiency. The state-of-the-art efficiency of geometric plasmonic metasurfaces at visible and near-infrared frequencies, for example, is ≤10%. Here, we report a multipole-interference-based transmission-type geometric plasmonic metasurface with a polarization conversion efficiency that reaches 42.3% at 744 nm, over 400% increase over the state of the art. The efficiency is augmented by breaking the scattering symmetry due to simultaneously approaching the generalized Kerker condition for two orthogonal polarizations. In addition, the design of the metasurface proposed in this study introduces an air gap between the antennas and the surrounding media that confines the field within the gap, which mitigates the crosstalk between meta-atoms and minimizes metallic absorption. The proposed metasurface is broadband, versatile, easy to fabricate, and highly tolerant to fabrication errors. We highlight the technological relevance of our plasmonic metasurface by demonstrating a transmission-type beam deflector and hologram with record efficiencies.

 
more » « less
NSF-PAR ID:
10153500
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Light: Science & Applications
Volume:
8
Issue:
1
ISSN:
2047-7538
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Metasurfaces, as a two-dimensional (2D) version of metamaterials, have drawn considerable attention for their revolutionary capability in manipulating the amplitude, phase, and polarization of light. As one of the most important types of metasurfaces, geometric metasurfaces provide a versatile platform for controlling optical phase distributions due to the geometric nature of the generated phase profile. However, it remains a great challenge to design geometric metasurfaces for realizing spin-switchable functionalities because the generated phase profile with the converted spin is reversed once the handedness of the incident beam is switched. Here, we propose and experimentally demonstrate chiral geometric metasurfaces based on intrinsically chiral plasmonic stepped nanoapertures with a simultaneously high circular dichroism in transmission (CDT) and large cross-polarization ratio (CPR) in transmitted light to exhibit spin-controlled wavefront shaping capabilities. The chiral geometric metasurfaces are constructed by merging two independently designed subarrays of the two enantiomers for the stepped nanoaperture. Under a certain incident handedness, the transmission from one subarray is allowed, while the transmission from the other subarray is strongly prohibited. The merged metasurface then only exhibits the transmitted signal with the phase profile of one subarray, which can be switched by changing the incident handedness. Based on the chiral geometric metasurface, both chiral metasurface holograms and the spin-dependent generation of hybrid-order Poincaré sphere beams are experimentally realized. Our approach promises further applications in spin-controlled metasurface devices for complex beam conversion, image processing, optical trapping, and optical communications.

     
    more » « less
  2. Abstract

    Metasurfaces are planar structures that can offer unprecedented freedoms to manipulate electromagnetic wavefronts at deep‐subwavelength scale. The wavelength‐dependent behavior of the metasurface could severely reduce the design freedom. Besides, realizing high‐efficiency metasurfaces with a simple design procedure and easy fabrication is of great interest. Here, a novel approach to design highly efficient meta‐atoms that can achieve full 2π phase coverage at two wavelengths independently in the transmission mode is proposed. More specifically, a bilayer meta‐atom is designed to operate at two wavelengths, the cross‐polarized transmission efficiencies of which reach more than 70% at both wavelengths. The 2π phase modulations at two wavelengths under the circularly polarized incidence can be achieved independently by varying the orientations of the two resonators constructing the meta‐atom based on Pancharatnam–Berry phase principle. As proof‐of‐concept demonstrations, three dual‐wavelength meta‐devices employing the proposed meta‐atom are numerically investigated and experimentally verified, including two metalenses (1D and 2D) with the same focusing length and a vortex beam generator carrying different orbital angular momentum modes at two operation wavelengths. Both the simulation and experimental results satisfy the design goals, which validate the proposed approach.

     
    more » « less
  3. Abstract

    Numerous efforts have been undertaken to develop rectifying antennas operating at high frequencies, especially dedicated to light harvesting and photodetection applications. However, the development of efficient high frequency rectifying antennas has been a major technological challenge both due to a lack of comprehension of the underlying physics and limitations in the fabrication techniques. Various rectification strategies have been implemented, including metal‐insulator‐metal traveling‐wave diodes, plasmonic nanogap optical antennas, and whisker diodes, although all show limited high‐frequency operation and modest conversion efficiencies. Here a new type of rectifying antenna based on plasmonic carrier generation is demonstrated. The proposed structure consists of a resonant metallic conical nano‐antenna tip in contact with the oxide surface of an oxide/metal bilayer. The conical shape allows for an improved current generation based on plasmon‐mediated electromagnetic‐to‐electron conversion, an effect exploiting the nanoscale‐tip contact of the rectifying antenna, and proportional to the antenna resonance and to the surface‐electron scattering. Importantly, this solution provides rectification operation at 280 THz (1064 nm) with a 100‐fold increase in efficiency compared to previously reported results. Finally, the conical rectifying antenna is also demonstrated to operate at 384 THz (780 nm), hence paving a way toward efficient rectennas toward the visible range.

     
    more » « less
  4. Abstract

    We demonstrate ultra-thin (1.5-3λ0), fabrication-error tolerant efficient diffractive terahertz (THz) optical elements designed using a computer-aided optimization-based search algorithm. The basic operation of these components is modeled using scalar diffraction of electromagnetic waves through a pixelated multi-level 3D-printed polymer structure. Through the proposed design framework, we demonstrate the design of various ultrathin planar THz optical elements, namely (i) a high Numerical Aperture (N.A.), broadband aberration rectified spherical lens (0.1 THz–0.3 THz), (ii) a spectral splitter (0.3 THz–0.6 THz) and (iii) an on-axis broadband transmissive hologram (0.3 THz–0.5 THz). Such an all-dielectric computational design-based approach is advantageous against metallic or dielectric metasurfaces from the perspective that it incorporates all the inherent structural advantages associated with a scalar diffraction based approach, such as (i) ease of modeling, (ii) substrate-less facile manufacturing, (iii) planar geometry, (iv) high efficiency along with(v)broadband operation, (vi) area scalability and (vii) fabrication error-tolerance. With scalability and error tolerance being two major bottlenecks of previous design strategies. This work is therefore, a significant step towards the design of THz optical elements by bridging the gap between structural and computational design i.e. through a hybrid design-based approach enabling considerably less computational resources than the previous state of the art. Furthermore, the approach used herein can be expanded to a myriad of optical elements at any wavelength regime.

     
    more » « less
  5. Abstract

    Metasurfaces composed of in‐plane subwavelength nanostructures have unprecedented capability in manipulating the amplitude, phase, and polarization states of light. Here, a unique type of direction‐controlled bifunctional metasurface polarizer is proposed and experimentally demonstrated based on plasmonic stepped slit‐groove dimers. In the forward direction, a chiral linear polarizer is enabled which only allows the transmission of a certain incident handedness and converts it into the specified linear polarization. In the backward direction, the metasurface functions as an anisotropic circular polarizer to selectively convert a certain linear polarization component into the desired circularly polarized transmission. The observed direction‐controlled polarization selection and conversion are explained by the spin‐dependent mode coupling process inside the bilayer structure. Anisotropic chiral imaging based on the proposed metasurface polarizer is further demonstrated. The results provide new degrees of freedom to realize future multifunctional photonic integrated devices for structured light conversion, vector beam generation, optical imaging and sensing, and optical communication.

     
    more » « less