(Early Access) Effective tissue clutter filtering is critical for non-contrast ultrasound imaging of slow blood flow in small vessels. Independent component analysis (ICA) has been considered by other groups for ultrasound clutter filtering in the past and was shown to be superior to principal component analysis (PCA)-based methods. However, it has not been considered specifically for slow flow applications or revisited since the onset of other slow flow-focused advancements in beamforming and tissue filtering, namely angled plane wave beamforming and full spatiotemporal singular value decomposition (SVD) (i.e., PCA-based) tissue filtering. In this work, we aim to develop a full spatiotemporal ICA-based tissue filtering technique facilitated by plane wave applications and compare it to SVD filtering. We compare ICA and SVD filtering in terms of optimal image quality in simulations and phantoms as well as in terms of optimal correlation to ground truth blood signal in simulations. Additionally, we propose an adaptive blood independent component sorting and selection method. We show that optimal and adaptive ICA can consistently separate blood from tissue better than principal component analysis (PCA)-based methods using simulations and phantoms. Additionally we demonstrate initial in vivo feasibility in ultrasound data of a liver tumor. 
                        more » 
                        « less   
                    
                            
                            Non-contrast power Doppler ultrasound imaging for early assessment of trans-arterial chemoembolization of liver tumors
                        
                    
    
            Abstract Trans-arterial chemoembolization (TACE) is an important yet variably effective treatment for management of hepatic malignancies. Lack of response can be in part due to inability to assess treatment adequacy in real-time. Gold-standard contrast enhanced computed tomography and magnetic resonance imaging, although effective, suffer from treatment-induced artifacts that prevent early treatment evaluation. Non-contrast ultrasound is a potential solution but has historically been ineffective at detecting treatment response. Here, we propose non-contrast ultrasound with recent perfusion-focused advancements as a tool for immediate evaluation of TACE. We demonstrate initial feasibility in an 11-subject pilot study. Treatment-induced changes in tumor perfusion are detected best when combining adaptive demodulation (AD) and singular value decomposition (SVD) techniques. Using a 0.5 s (300-sample) ensemble size, AD + SVD resulted in a 7.42 dB median decrease in tumor power after TACE compared to only a 0.06 dB median decrease with conventional methods. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1750994
- PAR ID:
- 10153530
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 9
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract BackgroundIntraoperative 2D quantitative angiography (QA) for intracranial aneurysms (IAs) has accuracy challenges due to the variability of hand injections. Despite the success of singular value decomposition (SVD) algorithms in reducing biases in computed tomography perfusion (CTP), their application in 2D QA has not been extensively explored. This study seeks to bridge this gap by investigating the potential of SVD‐based deconvolution methods in 2D QA, particularly in addressing the variability of injection durations. PurposeBuilding on the identified limitations in QA, the study aims to adapt SVD‐based deconvolution techniques from CTP to QA for IAs. This adaptation seeks to capitalize on the high temporal resolution of QA, despite its two‐dimensional nature, to enhance the consistency and accuracy of hemodynamic parameter assessment. The goal is to develop a method that can reliably assess hemodynamic conditions in IAs, independent of injection variables, for improved neurovascular diagnostics. Materials and methodsThe study included three internal carotid aneurysm (ICA) cases. Virtual angiograms were generated using computational fluid dynamics (CFD) for three physiologically relevant inlet velocities to simulate contrast media injection durations. Time‐density curves (TDCs) were produced for both the inlet and aneurysm dome. Various SVD variants, including standard SVD (sSVD) with and without classical Tikhonov regularization, block‐circulant SVD (bSVD), and oscillation index SVD (oSVD), were applied to virtual angiograms. The method was applied on virtual angiograms to recover the aneurysmal dome impulse response function (IRF) and extract flow related parameters such as Peak Height PHIRF, Area Under the Curve AUCIRF, and Mean transit time MTT. Next, correlations between QA parameters, injection duration, and inlet velocity were assessed for unconvolved and deconvolved data for all SVD methods. Additionally, we performed an in vitro study, to complement our in silico investigation. We generated a 2D DSA using a flow circuit design for a patient‐specific internal carotid artery phantom. The DSA showcases factors like x‐ray artifacts, noise, and patient motion. We evaluated QA parameters for the in vitro phantoms using different SVD variants and established correlations between QA parameters, injection duration, and velocity for unconvolved and deconvolved data. ResultsThe different SVD algorithm variants showed strong correlations between flow and deconvolution‐adjusted QA parameters. Furthermore, we found that SVD can effectively reduce QA parameter variability across various injection durations, enhancing the potential of QA analysis parameters in neurovascular disease diagnosis and treatment. ConclusionImplementing SVD‐based deconvolution techniques in QA analysis can enhance the precision and reliability of neurovascular diagnostics by effectively reducing the impact of injection duration on hemodynamic parameters.more » « less
- 
            Abstract BackgroundGlioblastoma Multiforme, an aggressive primary brain tumor, has a poor prognosis and no effective standard of care treatments. Most patients undergoing radiotherapy, along with Temozolomide chemotherapy, develop resistance to the drug, and recurrence of the tumor is a common issue after the treatment. We propose to model the pathways active in Glioblastoma using Boolean network techniques. The network captures the genetic interactions and possible mutations that are involved in the development of the brain tumor. The model is used to predict the theoretical efficacies of drugs for the treatment of cancer. ResultsWe use the Boolean network to rank the critical intervention points in the pathway to predict an effective therapeutic strategy for Glioblastoma. Drug repurposing helps to identify non-cancer drugs that could be effective in cancer treatment. We predict the effectiveness of drug combinations of anti-cancer and non-cancer drugs for Glioblastoma. ConclusionsGiven the genetic profile of a GBM tumor, the Boolean model can predict the most effective targets for treatment. We also identified two-drug combinations that could be more effective in killing GBM cells than conventional chemotherapeutic agents. The non-cancer drug Aspirin could potentially increase the cytotoxicity of TMZ in GBM patients.more » « less
- 
            Abstract Background Immunotherapy in colorectal cancer (CRC) regulates specific immune checkpoints and, when used in combination with chemotherapy, can improve patient prognosis. One specific immune checkpoint is the recruitment of circulating monocytes that differentiate into tumor-associated macrophages (TAMs) and promote tumor angiogenesis. Changes in vascularization can be non-invasively assessed via diffuse reflectance spectroscopy using hemoglobin concentrations and oxygenation in a localized tumor volume. In this study, we examine whether blockade of monocyte recruitment via CCL2 (macrophage chemoattractant protein-1) leads to enhanced sensitivity of 5-fluorouracil (5-FU) in a CT26-Balb/c mouse model of CRC. It was hypothesized that the blockade of TAMs will alter tumor perfusion, increasing chemotherapy response. A subcutaneous tumor model using Balb/c mice injected with CT26 colon carcinoma cells received either a saline or isotype control, anti-CCL2, 5-FU, or a combination of anti-CCL2 and 5-FU. Results Findings show that 12 days post-treatment, monocyte recruitment was significantly reduced by approximately 61% in the combination group. This shows that the addition of anti-CCL2 to 5-FU slowed the fold-change (change from the original measurement to the final measurement) in tumor volume from Day 0 to Day 12 (~ 5 fold). Modest improvements in oxygen saturation (~ 30%) were observed in the combination group. Conclusion The findings in this work suggest that the blockade of CCL2 is sufficient in the reduction of TAMs that are recruited into the tumor microenvironment and has the ability to modestly alter tumor perfusion during early-tumor response to treatment even though the overall benefit is relatively modest.more » « less
- 
            In the follow-up treatment of high-grade gliomas (HGGs), differentiating true tumor progression from treatment-related effects, such as pseudoprogression and radiation necrosis, presents an ongoing clinical challenge. Conventional MRI with and without intravenous contrast serves as the clinical benchmark for the posttreatment surveillance imaging of HGG. However, many advanced imaging techniques have shown promise in helping better delineate the findings in indeterminate scenarios, as posttreatment effects can often mimic true tumor progression on conventional imaging. These challenges are further confounded by the histologic admixture that can commonly occur between tumor growth and treatment-related effects within the posttreatment bed. This review discusses the current practices in the surveillance imaging of HGG and the role of advanced imaging techniques, including perfusion MRI and metabolic MRI.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
