skip to main content


Title: Complex microparticle architectures from stimuli-responsive intrinsically disordered proteins
Abstract

The controllable production of microparticles with complex geometries is useful for a variety of applications in materials science and bioengineering. The formation of intricate microarchitectures typically requires sophisticated fabrication techniques such as flow lithography or multiple-emulsion microfluidics. By harnessing the molecular interactions of a set of artificial intrinsically disordered proteins (IDPs), we have created complex microparticle geometries, including porous particles, core-shell and hollow shell structures, and a unique ‘fruits-on-a-vine’ arrangement, by exploiting the metastable region of the phase diagram of thermally responsive IDPs within microdroplets. Through multi-site unnatural amino acid (UAA) incorporation, these protein microparticles can also be photo-crosslinked and stably extracted to an all-aqueous environment. This work expands the functional utility of artificial IDPs as well as the available microarchitectures of this class of biocompatible IDPs, with potential applications in drug delivery and tissue engineering.

 
more » « less
NSF-PAR ID:
10153552
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
11
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    3D structures with complex geometric features at the microscale, such as microparticles and microfibers, have promising applications in biomedical engineering, self‐assembly, and photonics. Fabrication of complex 3D microshapes at scale poses a unique challenge; high‐resolution methods such as two‐photon‐polymerization have print speeds too low for high‐throughput production, while top‐down approaches for bulk processing using microfabricated template molds have limited control of microstructure geometries over multiple axes. Here, a method for microshape fabrication is presented that combines a thermally drawn transparent fiber template with a masked UV‐photopolymerization approach to enable biaxial control of microshape fabrication. Using this approach, high‐resolution production of complex microshapes not producible using alternative methods is demonstrated, such as octahedrons, dreidels, and axially asymmetric fibers, at throughputs as high as 825 structures/minute. Finally, the fiber template is functionalized with conductive electrodes to enable hierarchical subparticle localization using dielectrophoretic forces.

     
    more » « less
  2. Abstract

    Additive manufacturing, no longer reserved exclusively for prototyping components, can create parts with complex geometries and locally tailored properties. For example, multiple homogenous material sources can be used in different regions of a print or be mixed during printing to define properties locally. Additionally, heterogeneous composites provide an opportunity for another level of tuning properties through processing. For example, within particulate-filled polymer matrix composites before curing, the presence of an applied electric and/or magnetic fields can reorient filler particles and form hierarchical structures depending on the fields applied. Control of particle organization is important because effective material properties are highly dependent on the distribution of filler material within composites once cured. While previous work in homogenization and effective medium theories have determined properties based upon ideal analytic distributions of particle orientations and spatial location, this work expands upon these methods generating discrete distributions from quasi-Monte Carlo simulations of the electromagnetic processing event. Results of simulations provide predicted microarchitectures from which effective properties are determined via computational homogenization.

    These particle dynamics simulations account for dielectric and magnetic forces and torques in addition to hydrodynamic forces and hard particle separation. As such, the distributions generated are processing field dependent. The effective properties for a composite represented by this distribution are determined via computational homogenization using finite element analysis (FEA). This provides a path from constituents, through processing parameters to effective material properties. In this work, we use these simulations in conjunction with a multi-objective optimization scheme to resolve the relationships between processing conditions and effective properties, to inform field-assisted additive manufacturing processes.

    The constituent set providing the largest range of properties can be found using optimization techniques applied to the aforementioned simulation framework. This key information provides a recipe for tailoring properties for additive manufacturing design and production. For example, our simulation results show that stiffness for a 10% filler volume fraction can increase by 34% when aligned by an electric field as compared to a randomly distributed composite. The stiffness of this aligned sample is also 29% higher in the direction of the alignment than perpendicular to it, which only differs by 5% from the random case [1]. Understanding this behavior and accurately predicting composite properties is key to producing field processed composites and prints. Material property predictions compare favorably to effective medium theory and experimentation with trends in elastic and magnetic effective properties demonstrating the same anisotropic behavior as a result of applied field processing. This work will address the high computational expense of physics simulation based objective functions by using efficient algorithms and data structures. We will present an optimization framework using nested gradient searches for micro barium hexaferrite particles in a PDMS matrix, optimizing on composite magnetization to determine the volume fraction of filler that will provide the largest range of properties by varying the applied electric and magnetic fields.

     
    more » « less
  3. Abstract

    Due to their high spatial resolution and precise application of force, optical traps are widely used to study the mechanics of biomolecules and biopolymers at the single‐molecule level. Recently, core–shell particles with optical properties that enhance their trapping ability represent promising candidates for high‐force experiments. To fully harness their properties, methods for functionalizing these particles with biocompatible handles are required. Here, a straightforward synthesis is provided for producing functional titania core–shell microparticles with proteins and nucleic acids by adding a silane–thiol chemical group to the shell surface. These particles display higher trap stiffness compared to conventional plastic beads featured in optical tweezers experiments. These core–shell microparticles are also utilized in biophysical assays such as amyloid fiber pulling and actin rupturing to demonstrate their high‐force applications. It is anticipated that the functionalized core–shells can be used to probe the mechanics of stable proteins structures that are inaccessible using current trapping techniques.

     
    more » « less
  4. Abstract

    Mechanically guided, 3D assembly has attracted broad interests, owing to its compatibility with planar fabrication techniques and applicability to a diversity of geometries and length scales. Its further development requires the capability of on‐demand reversible shape reconfigurations, desirable for many emerging applications (e.g., responsive metamaterials, soft robotics). Here, the design, fabrication, and modeling of soft electrothermal actuators based on laser‐induced graphene (LIG) are reported and their applications in mechanically guided 3D assembly and human–soft actuators interaction are explored. Over 20 complex 3D architectures are fabricated, including reconfigurable structures that can reshape among three distinct geometries. Also, the structures capable of maintaining 3D shapes at room temperature without the need for any actuation are realized by fabricating LIG actuators at an elevated temperature. Finite element analysis can quantitatively capture key aspects that govern electrothermally controlled shape transformations, thereby providing a reliable tool for rapid design optimization. Furthermore, their applications are explored in human–soft actuators interaction, including elastic metamaterials with human gesture‐controlled bandgap behaviors and soft robotic fingers which can measure electrocardiogram from humans in an on‐demand fashion. Other demonstrations include artificial muscles, which can lift masses that are about 110 times of their weights and biomimetic frog tongues which can prey insects.

     
    more » « less
  5. Abstract

    Stimulus‐responsive polymers are attractive for microactuators because they can be easily miniaturized and remotely actuated, enabling untethered operation. In this work, magnetic Fe microparticles are dispersed in a thermoplastic polyurethane shape memory polymer matrix and formed into artificial, magnetic cilia by solvent casting within the vertical magnetic field in the gap between two permanent magnets. Interactions of the magnetic moments of the microparticles, aligned by the applied magnetic field, drive self‐assembly of magnetic cilia along the field direction. The resulting magnetic cilia are reconfigurable using light and magnetic fields as remote stimuli. Temporary shapes obtained through combined magnetic actuation and photothermal heating can be locked by switching off the light and magnetic field. Subsequently turning on the light without the magnetic field drives recovery of the permanent shape. The permanent shape can also be reprogrammed after preparing the cilia by applying mechanical constraints and annealing at high temperature. Spatially controlled actuation is demonstrated by applying a mask for optical pattern transfer into the array of magnetic cilia. A theoretical model is developed for predicting the response of shape memory magnetic cilia and elucidates physical mechanisms behind observed phenomena, enabling the design and optimization of ciliary systems for specific applications.

     
    more » « less