skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The UWHAM and SWHAM Software Package
Abstract We introduce the UWHAM (binless weighted histogram analysis method) and SWHAM (stochastic UWHAM) software package that can be used to estimate the density of states and free energy differences based on the data generated by multi-state simulations. The programs used to solve the UWHAM equations are written in the C++ language and operated via the command line interface. In this paper, first we review the theoretical bases of UWHAM, its stochastic solver RE-SWHAM (replica exchange-like SWHAM)and ST-SWHAM (serial tempering-like SWHAM). Then we provide a tutorial with examples that explains how to apply the UWHAM program package to analyze the data generated by different types of multi-state simulations: umbrella sampling, replica exchange, free energy perturbation simulations, etc. The tutorial examples also show that the UWHAM equations can be solved stochastically by applying the RE-SWHAM and ST-SWHAM programs when the data ensemble is large. If the simulations at some states are far from equilibrium, the Stratified RE-SWHAM program can be applied to obtain the equilibrium distribution of the state of interest. All the source codes and the tutorial examples are available from our group’s web page:https://ronlevygroup.cst.temple.edu/software/UWHAM_and_SWHAM_webpage/index.html.  more » « less
Award ID(s):
1665032
PAR ID:
10153622
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
9
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present a critical analysis of physics-informed neural operators (PINOs) to solve partial differential equations (PDEs) that are ubiquitous in the study and modeling of physics phenomena using carefully curated datasets. Further, we provide a benchmarking suite which can be used to evaluate PINOs in solving such problems. We first demonstrate that our methods reproduce the accuracy and performance of other neural operators published elsewhere in the literature to learn the 1D wave equation and the 1D Burgers equation. Thereafter, we apply our PINOs to learn new types of equations, including the 2D Burgers equation in the scalar, inviscid and vector types. Finally, we show that our approach is also applicable to learn the physics of the 2D linear and nonlinear shallow water equations, which involve three coupled PDEs. We release our artificial intelligence surrogates and scientific software to produce initial data and boundary conditions to study a broad range of physically motivated scenarios. We provide thesource code, an interactivewebsiteto visualize the predictions of our PINOs, and a tutorial for their use at theData and Learning Hub for Science. 
    more » « less
  2. Abstract Spatial transcriptomics (ST) technologies enable high throughput gene expression characterization within thin tissue sections. However, comparing spatial observations across sections, samples, and technologies remains challenging. To address this challenge, we develop STalign to align ST datasets in a manner that accounts for partially matched tissue sections and other local non-linear distortions using diffeomorphic metric mapping. We apply STalign to align ST datasets within and across technologies as well as to align ST datasets to a 3D common coordinate framework. We show that STalign achieves high gene expression and cell-type correspondence across matched spatial locations that is significantly improved over landmark-based affine alignments. Applying STalign to align ST datasets of the mouse brain to the 3D common coordinate framework from the Allen Brain Atlas, we highlight how STalign can be used to lift over brain region annotations and enable the interrogation of compositional heterogeneity across anatomical structures. STalign is available as an open-source Python toolkit athttps://github.com/JEFworks-Lab/STalignand as Supplementary Software with additional documentation and tutorials available athttps://jef.works/STalign. 
    more » « less
  3. Mathematical models based on systems of ordinary differential equations (ODEs) are frequently applied in various scientific fields to assess hypotheses, estimate key model parameters, and generate predictions about the system's state. To support their application, we present a comprehensive, easy‐to‐use, and flexible MATLAB toolbox,QuantDiffForecast, and associated tutorial to estimate parameters and generate short‐term forecasts with quantified uncertainty from dynamical models based on systems of ODEs. We provide software (https://github.com/gchowell/paramEstimation_forecasting_ODEmodels/) and detailed guidance on estimating parameters and forecasting time‐series trajectories that are characterized using ODEs with quantified uncertainty through a parametric bootstrapping approach. It includes functions that allow the user to infer model parameters and assess forecasting performance for different ODE models specified by the user, using different estimation methods and error structures in the data. The tutorial is intended for a diverse audience, including students training in dynamic systems, and will be broadly applicable to estimate parameters and generate forecasts from models based on ODEs. The functions included in the toolbox are illustrated using epidemic models with varying levels of complexity applied to data from the 1918 influenza pandemic in San Francisco. A tutorial video that demonstrates the functionality of the toolbox is included. 
    more » « less
  4. Abstract Numerous artificial intelligence-based weather prediction (AIWP) models have emerged over the past 2 years, mostly in the private sector. There is an urgent need to evaluate these models from a meteorological perspective, but access to the output of these models is limited. We detail two new resources to facilitate access to AIWP model output data in the hope of accelerating the investigation of AIWP models by the meteorological community. First, a 3-yr (and growing) reforecast archive beginning in October 2020 containing twice daily 10-day forecasts forFourCastNet v2-small,Pangu-Weather, andGraphCast Operationalis now available via an Amazon Simple Storage Service (S3) bucket through NOAA’s Open Data Dissemination (NODD) program (https://noaa-oar-mlwp-data.s3.amazonaws.com/index.html). This reforecast archive was initialized with both the NOAA’s Global Forecast System (GFS) and ECMWF’s Integrated Forecasting System (IFS) initial conditions in the hope that users can begin to perform the feature-based verification of impactful meteorological phenomena. Second, real-time output for these three models is visualized on our web page (https://aiweather.cira.colostate.edu) along with output from the GFS and the IFS. This allows users to easily compare output between each AIWP model and traditional, physics-based models with the goal of familiarizing users with the characteristics of AIWP models and determine whether the output aligns with expectations, is physically consistent and reasonable, and/or is trustworthy. We view these two efforts as a first step toward evaluating whether these new AIWP tools have a place in forecast operations. 
    more » « less
  5. Abstract Simple dynamic modeling tools can help generate real-time short-term forecasts with quantified uncertainty of the trajectory of diverse growth processes unfolding in nature and society, including disease outbreaks. An easy-to-use and flexible toolbox for this purpose is lacking. This tutorial-based primer introduces and illustratesGrowthPredict, a user-friendly MATLAB toolbox for fitting and forecasting time-series trajectories using phenomenological dynamic growth models based on ordinary differential equations. This toolbox is accessible to a broad audience, including students training in mathematical biology, applied statistics, and infectious disease modeling, as well as researchers and policymakers who need to conduct short-term forecasts in real-time. The models included in the toolbox capture exponential and sub-exponential growth patterns that typically follow a rising pattern followed by a decline phase, a common feature of contagion processes. Models include the 1-parameter exponential growth model and the 2-parameter generalized-growth model, which have proven useful in characterizing and forecasting the ascending phase of epidemic outbreaks. It also includes the 2-parameter Gompertz model, the 3-parameter generalized logistic-growth model, and the 3-parameter Richards model, which have demonstrated competitive performance in forecasting single peak outbreaks. We provide detailed guidance on forecasting time-series trajectories and available software (https://github.com/gchowell/forecasting_growthmodels), including the full uncertainty distribution derived through parametric bootstrapping, which is needed to construct prediction intervals and evaluate their accuracy. Functions are available to assess forecasting performance across different models, estimation methods, error structures in the data, and forecasting horizons. The toolbox also includes functions to quantify forecasting performance using metrics that evaluate point and distributional forecasts, including the weighted interval score. This tutorial and toolbox can be broadly applied to characterizing and forecasting time-series data using simple phenomenological growth models. As a contagion process takes off, the tools presented in this tutorial can help create forecasts to guide policy regarding implementing control strategies and assess the impact of interventions. The toolbox functionality is demonstrated through various examples, including a tutorial video, and the examples use publicly available data on the monkeypox (mpox) epidemic in the USA. 
    more » « less