skip to main content


Title: Biochemical sensing in graphene-enhanced microfiber resonators with individual molecule sensitivity and selectivity
Abstract

Photonic sensors that are able to detect and track biochemical molecules offer powerful tools for information acquisition in applications ranging from environmental analysis to medical diagnosis. The ultimate aim of biochemical sensing is to achieve both quantitative sensitivity and selectivity. As atomically thick films with remarkable optoelectronic tunability, graphene and its derived materials have shown unique potential as a chemically tunable platform for sensing, thus enabling significant performance enhancement, versatile functionalization and flexible device integration. Here, we demonstrate a partially reduced graphene oxide (prGO) inner-coated and fiber-calibrated Fabry-Perot dye resonator for biochemical detection. Versatile functionalization in the prGO film enables the intracavity fluorescent resonance energy transfer (FRET) to be chemically selective in the visible band. Moreover, by measuring the intermode interference via noise canceled beat notes and locked-in heterodyne detection with Hz-level precision, we achieved individual molecule sensitivity for dopamine, nicotine and single-strand DNA detection. This work combines atomic-layer nanoscience and high-resolution optoelectronics, providing a way toward high-performance biochemical sensors and systems.

 
more » « less
NSF-PAR ID:
10153663
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Light: Science & Applications
Volume:
8
Issue:
1
ISSN:
2047-7538
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Enzymatic DNA amplification‐based approaches involving intercalating DNA‐binding fluorescent dyes and expensive optical detectors are the gold standard for nucleic acid detection. As components of a simplified and miniaturized system, conventional silicon‐based ion sensitive field effect transistors (ISFETs) that measure a decrease in pH due to the generation of pyrophosphates during DNA amplification have been previously reported. In this article, Bst polymerase in a loop‐mediated isothermal amplification (LAMP) reaction combined with target‐specific primers and crumpled graphene field effect transistors (gFETs) to electrically detect amplification by sensing the reduction in primers is used. Graphene is known to adsorb single‐stranded DNA due to noncovalent π–π bonds, but not double‐stranded DNA. This approach does not require any surface functionalization and allows the detection of primer concentrations at the endpoint of reactions. As recently demonstrated, the crumpled gFET over the conventional flat gFET sensors due to their superior sensitivity is chosen. The endpoint of amplification reaction with starting concentrations down to 8 × 10−21min 90 min including the time of amplification and detection is detected. With its high sensitivity and small footprint, this platform will help bring complex lab‐based diagnostic and genotyping amplification assays to the point‐of‐care.

     
    more » « less
  2. Neurotransmitters are small molecules involved in neuronal signaling and can also serve as stress biomarkers.1Their abnormal levels have been also proposed to be indicative of several neurological diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington disease, among others. Hence, measuring their levels is highly important for early diagnosis, therapy, and disease prognosis. In this work, we investigate facile functionalization methods to tune and enhance sensitivity of printed graphene sensors to neurotransmitters. Sensors based on direct laser scribing and screen-printed graphene ink are studied. These printing methods offer ease of prototyping and scalable fabrication at low cost.

    The effect of functionalization of laser induced graphene (LIG) by electrodeposition and solution-based deposition of TMDs (molybdenum disulfide2and tungsten disulfide) and metal nanoparticles is studied. For different processing methods, electrochemical characteristics (such as electrochemically active surface area: ECSA and heterogenous electron transfer rate: k0) are extracted and correlated to surface chemistry and defect density obtained respectively using X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. These functionalization methods are observed to directly impact the sensitivity and limit of detection (LOD) of the graphene sensors for the studied neurotransmitters. For example, as compared to bare LIG, it is observed that electrodeposition of MoS2on LIG improves ECSA by 3 times and k0by 1.5 times.3Electrodeposition of MoS2also significantly reduces LOD of serotonin and dopamine in saliva, enabling detection of their physiologically relevant concentrations (in pM-nM range). In addition, chemical treatment of LIG sensors is carried out in the form of acetic acid treatment. Acetic acid treatment has been shown previously to improve C-C bonds improving the conductivity of LIG sensors.4In our work, in particular, acetic acid treatment leads to larger improvement of LOD of norepinephrine compared to MoS2electrodeposition.

    In addition, we investigate the effect of plasma treatment to tune the sensor response by modifying the defect density and chemistry. For example, we find that oxygen plasma treatment of screen-printed graphene ink greatly improves LOD of norepinephrine up to three orders of magnitude, which may be attributed to the increased defects and oxygen functional groups on the surface as evident by XPS measurements. Defects are known to play a key role in enhancing the sensitivity of 2D materials to surface interactions, and have been explored in tuning/enhancing the sensor sensitivity.5Building on our previous work,3we apply a custom machine learning-based data processing method to further improve that sensitivity and LOD, and also to automatically benchmark different molecule-material pairs.

    Future work includes expanding the plasma chemistry and conditions, studying the effect of precursor mixture in laser-induced solution-based functionalization, and understanding the interplay between molecule-material system. Work is also underway to improve the machine learning model by using nonlinear learning models such as neural networks to improve the sensor sensitivity, selectivity, and robustness.

    References

    A. J. Steckl, P. Ray, (2018), doi:10.1021/acssensors.8b00726.

    Y. Lei, D. Butler, M. C. Lucking, F. Zhang, T. Xia, K. Fujisawa, T. Granzier-Nakajima, R. Cruz-Silva, M. Endo, H. Terrones, M. Terrones, A. Ebrahimi,Sci. Adv.6, 4250–4257 (2020).

    V. Kammarchedu, D. Butler, A. Ebrahimi,Anal. Chim. Acta.1232, 340447 (2022).

    H. Yoon, J. Nah, H. Kim, S. Ko, M. Sharifuzzaman, S. C. Barman, X. Xuan, J. Kim, J. Y. Park,Sensors Actuators B Chem.311, 127866 (2020).

    T. Wu, A. Alharbi, R. Kiani, D. Shahrjerdi,Adv. Mater.31, 1–12 (2019).

     
    more » « less
  3. Abstract

    Pseudomonas aeruginosa(P. aeruginosa) is an opportunistic pathogen causing infections in blood and implanted devices. Traditional identification methods take more than 24 h to produce results. Molecular biology methods expedite detection, but require an advanced skill set. To address these challenges, this work demonstrates functionalization of laser‐induced graphene (LIG) for developing flexible electrochemical sensors forP. aeruginosabased on phenazines. Electrodeposition as a facile approach is used to functionalize LIG with molybdenum polysulfide (MoSx). The sensor's limit of detection (LOD), sensitivity, and specificity are determined in broth, agar, and wound simulating medium (WSM). Control experiments withEscherichia coli, which does not produce phenazines, demonstrate specificity of sensors forP. aeruginosa. The LOD for pyocyanin (PYO) and phenazine‐1‐carboxylic acid (PCA) is 0.19 × 10−6 and 1.2 × 10−6 m, respectively. Furthermore, the highly stable sensors enable real‐time monitoring ofP. aeruginosabiofilms over several days. Comparing square wave voltammetry data over time shows time‐dependent generation of phenazines. In particular, two configurations—“Normal” and “Flipped”—are studied, showing that the phenazines time dynamics vary depending on how cells interact with sensors. The reported results demonstrate the potential of the developed sensors for integration with wound dressings for early diagnosis ofP. aeruginosainfection.

     
    more » « less
  4. There has been an increasing need of technologies to manufacturing chemical and biological sensors for various applications ranging from environmental monitoring to human health monitoring. Currently, manufacturing of most chemical and biological sensors relies on a variety of standard microfabrication techniques, such as physical vapor deposition and photolithography, and materials such as metals and semiconductors. Though functional, they are hampered by high cost materials, rigid substrates, and limited surface area. Paper based sensors offer an intriguing alternative that is low cost, mechanically flexible, has the inherent ability to filter and separate analytes, and offers a high surface area, permeable framework advantageous to liquid and vapor sensing. However, a major drawback is that standard microfabrication techniques cannot be used in paper sensor fabrication. To fabricate sensors on paper, low temperature additive techniques must be used, which will require new manufacturing processes and advanced functional materials. In this work, we focus on using aerosol jet printing as a highresolution additive process for the deposition of ink materials to be used in paper-based sensors. This technique can use a wide variety of materials with different viscosities, including materials with high porosity and particles inherent to paper. One area of our efforts involves creating interdigitated microelectrodes on paper in a one-step process using commercially available silver nanoparticle and carbon black based conductive inks. Another area involves use of specialized filter papers as substrates, such as multi-layered fibrous membrane paper consisting of a poly(acrylonitrile) nanofibrous layer and a nonwoven poly(ethylene terephthalate) layer. The poly(acrylonitrile) nanofibrous layer are dense and smooth enough to allow for high resolution aerosol jet printing. With additively fabricated electrodes on the paper, molecularly-functionalized metal nanoparticles are deposited by molecularly-mediated assembling, drop casting, and printing (sensing and electrode materials), allowing full functionalization of the paper, and producing sensor devices with high surface area. These sensors, depending on the electrode configuration, are used for detection of chemical and biological species in vapor phase, such as water vapor and volatile organic compounds, making them applicable to human performance monitoring. These paper based sensors are shown to display an enhancement in sensitivity, as compared to control devices fabricated on non-porous polyimide substrates. These results have demonstrated the feasibility of paper-based printed devices towards manufacturing of a fully wearable, highly-sensitive, and wireless human performance monitor coupled to flexible electronics with the capability to communicate wirelessly to a smartphone or other electronics for data logging and analysis. 
    more » « less
  5. Abstract

    Universal platforms for biomolecular analysis using label‐free sensing modalities can address important diagnostic challenges. Electrical field effect‐sensors are an important class of devices that can enable point‐of‐care sensing by probing the charge in the biological entities. Use of crumpled graphene for this application is especially promising. It is previously reported that the limit of detection (LoD) on electrical field effect‐based sensors using DNA molecules on the crumpled graphene FET (field‐effect transistor) platform. Here, the crumpled graphene FET‐based biosensing of important biomarkers including small molecules and proteins is reported. The performance of devices is systematically evaluated and optimized by studying the effect of the crumpling ratio on electrical double layer (EDL) formation and bandgap opening on the graphene. It is also shown that a small and electroneutral molecule dopamine can be captured by an aptamer and its conformation change induced electrical signal changes. Three kinds of proteins were captured with specific antibodies including interleukin‐6 (IL‐6) and two viral proteins. All tested biomarkers are detectable with the highest sensitivity reported on the electrical platform. Significantly, two COVID‐19 related proteins, nucleocapsid (N‐) and spike (S‐) proteins antigens are successfully detected with extremely low LoDs. This electrical antigen tests can contribute to the challenge of rapid, point‐of‐care diagnostics.

     
    more » « less