skip to main content

Title: Extracellular pyridine nucleotides trigger plant systemic immunity through a lectin receptor kinase/BAK1 complex

Systemic acquired resistance (SAR) is a long-lasting broad-spectrum plant immunity induced by mobile signals produced in the local leaves where the initial infection occurs. Although multiple structurally unrelated signals have been proposed, the mechanisms responsible for perception of these signals in the systemic leaves are unknown. Here, we show that exogenously applied nicotinamide adenine dinucleotide (NAD+) moves systemically and induces systemic immunity. We demonstrate that the lectin receptor kinase (LecRK), LecRK-VI.2, is a potential receptor for extracellular NAD+(eNAD+) and NAD+phosphate (eNADP+) and plays a central role in biological induction of SAR. LecRK-VI.2 constitutively associates with BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 (BAK1) in vivo. Furthermore, BAK1 and its homolog BAK1-LIKE1 are required for eNAD(P)+signaling and SAR, and the kinase activities of LecR-VI.2 and BAK1 are indispensable to their function in SAR. Our results indicate that eNAD+is a putative mobile signal, which triggers SAR through its receptor complex LecRK-VI.2/BAK1 inArabidopsis thaliana.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Systemic acquired resistance (SAR) is a long-lasting broad-spectrum plant defense mechanism induced in distal systemic tissues by mobile signals generated at the primary infection site. Despite the discoveries of multiple potential mobile signals, how these signals cooperate to trigger downstream SAR signaling is unknown. Here, we show that endogenous extracellular nicotinamide adenine dinucleotide (phosphate) [eNAD(P)] accumulates systemically upon pathogen infection and that both eNAD(P) and the lectin receptor kinase (LecRK), LecRK-VI.2, are required in systemic tissues for the establishment of SAR. Moreover, putative mobile signals, e.g., N-hydroxypipecolic acid (NHP), trigger de novo systemic eNAD(P) accumulation largely through the respiratory burst oxidase homolog RBOHF-produced reactive oxygen species (ROS). Importantly, NHP-induced systemic immunity mainly depends on ROS, eNAD(P), LecRK-VI.2, and BAK1, indicating that NHP induces SAR primarily through the ROS-eNAD(P)-LecRK-VI.2/BAK1 signaling pathway. Our results suggest that mobile signals converge on eNAD(P) in systemic tissues to trigger SAR through LecRK-VI.2.

    more » « less
  2. Abstract

    Plant pathogens use effector proteins to target host processes involved in pathogen perception, immune signalling, or defence outputs. Unlike foliar pathogens, it is poorly understood how root‐invading pathogens suppress immunity. The Avr2 effector from the tomato root‐ and xylem‐colonizing pathogenFusarium oxysporumsuppresses immune signalling induced by various pathogen‐associated molecular patterns (PAMPs). It is unknown how Avr2 targets the immune system. TransgenicAVR2 Arabidopsis thalianaphenocopies mutants in which the pattern recognition receptor (PRR) co‐receptor BRI1‐ASSOCIATED RECEPTOR KINASE (BAK1) or its downstream signalling kinase BOTRYTIS‐INDUCED KINASE 1 (BIK1) are knocked out. We therefore tested whether these kinases are Avr2 targets. Flg22‐induced complex formation of the PRR FLAGELLIN SENSITIVE 2 and BAK1 occurred in the presence and absence of Avr2, indicating that Avr2 does not affect BAK1 function or PRR complex formation. Bimolecular fluorescence complementation assays showed that Avr2 and BIK1 co‐localize in planta. Although Avr2 did not affect flg22‐induced BIK1 phosphorylation, mono‐ubiquitination was compromised. Furthermore, Avr2 affected BIK1 abundance and shifted its localization from nucleocytoplasmic to the cell periphery/plasma membrane. Together, these data imply that Avr2 may retain BIK1 at the plasma membrane, thereby suppressing its ability to activate immune signalling. Because mono‐ubiquitination of BIK1 is required for its internalization, interference with this process by Avr2 could provide a mechanistic explanation for the compromised BIK1 mobility upon flg22 treatment. The identification of BIK1 as an effector target of a root‐invading vascular pathogen identifies this kinase as a conserved signalling component for both root and shoot immunity.

    more » « less
  3. Stomatal immunity is the primary gate of the plant pathogen defense system. Non-expressor of Pathogenesis Related 1 (NPR1) is the salicylic acid (SA) receptor, which is critical for stomatal defense. SA induces stomatal closure, but the specific role of NPR1 in guard cells and its contribution to systemic acquired resistance (SAR) remain largely unknown. In this study, we compared the response to pathogen attack in wild-type Arabidopsis and the npr1-1 knockout mutant in terms of stomatal movement and proteomic changes. We found that NPR1 does not regulate stomatal density, but the npr1-1 mutant failed to close stomata when under pathogen attack, resulting in more pathogens entering the leaves. Moreover, the ROS levels in the npr1-1 mutant were higher than in the wild type, and several proteins involved in carbon fixation, oxidative phosphorylation, glycolysis, and glutathione metabolism were differentially changed in abundance. Our findings suggest that mobile SAR signals alter stomatal immune response possibly by initiating ROS burst, and the npr1-1 mutant has an alternative priming effect through translational regulation. 
    more » « less
  4. null (Ed.)
    Systemic Acquired Resistance (SAR) improves immunity of plant systemic tissue after local exposure to a pathogen. Guard cells that form stomatal pores on leaf surfaces recognize bacterial pathogens via pattern recognition receptors, such as Flagellin Sensitive 2 (FLS2). However, how SAR affects stomatal immunity is not known. In this study, we aim to reveal molecular mechanisms underlying the guard cell response to SAR using multi-omics of proteins, metabolites and lipids. Arabidopsis plants previously exposed to pathogenic bacteria Pseudomonas syringae pv. tomato DC3000 (Pst) exhibit an altered stomatal response compared to control plants when they are later exposed to the bacteria. Reduced stomatal apertures of SAR primed plants lead to decreased number of bacteria in leaves. Multi-omics has revealed molecular components of SAR response specific to guard cells functions, including potential roles of reactive oxygen species (ROS) and fatty acid signaling. Our results show an increase in palmitic acid and its derivative in the primed guard cells. Palmitic acid may play a role as an activator of FLS2, which initiates stomatal immune response. Improved understanding of how SAR signals affect stomatal immunity can aid biotechnology and marker-based breeding of crops for enhanced disease resistance. 
    more » « less
  5. Abstract

    Mechanical wounding occurs in plants during biotic or abiotic stresses and is associated with the activation of long-distance signaling pathways that trigger wound responses in systemic tissues. Among the different systemic signals activated by wounding are electric signals, calcium, hydraulic, and reactive oxygen species (ROS) waves. The release of glutamate (Glu) from cells at the wounded tissues was recently proposed to trigger systemic signal transduction pathways via GLU-LIKE RECEPTORs (GLRs). However, the role of another important compound released from cells during wounding (extracellular ATP [eATP]) in triggering systemic responses is not clear. Here, we show in Arabidopsis (Arabidopsis thaliana) that wounding results in the accumulation of nanomolar levels of eATP and that these levels are sufficient to trigger the systemic ROS wave. We further show that the triggering of the ROS wave by eATP during wounding requires the PURINORECEPTOR 2 KINASE (P2K) receptor. Application of eATP to unwounded leaves triggered the ROS wave, and the activation of the ROS wave by wounding or eATP application was suppressed in mutants deficient in P2Ks (e.g. p2k1-3, p2k2, and p2k1-3p2k2). In addition, expression of systemic wound response (SWR) transcripts was suppressed in mutants deficient in P2Ks during wounding. Interestingly, the effect of Glu and eATP application on ROS wave activation was not additive, suggesting that these two compounds function in the same pathway to trigger the ROS wave. Our findings reveal that in addition to sensing Glu via GLRs, eATP sensed by P2Ks plays a key role in the triggering of SWRs in plants.

    more » « less