Abstract Single point incremental forming (SPIF) is a flexible manufacturing process that has applications in industries ranging from biomedical to automotive. In addition to rapid prototyping, which requires easy adaptations in geometry or material for design changes, control of the final part properties is desired. One strategy that can be implemented is stress superposition, which is the application of additional stresses during an existing manufacturing process. Tensile and compressive stresses applied during SPIF showed significant effects on the resulting microstructure in stainless steel 304 truncated square pyramids. Specifically, the amount of martensitic transformation was increased through stress superposed incremental forming. Finite element analyses with advanced material modeling supported that the stress triaxiality had a larger effect than the Lode angle parameter on the phase transformation that occurred during deformation. By controlling the amount of tensile and compressive stresses superposed during incremental forming, the microstructure of the final component can be manipulated based on the intended application and desired final part properties.
more »
« less
Giant reversible elongation upon cooling and contraction upon heating for a crosslinked cis poly(1,4-butadiene) system at temperatures below zero Celsius
Abstract Polymers with reversible elongation upon cooling (EUC) and contraction upon heating (CUH) enabled applications in actuators, fasteners, dampers, grippers, swimmers, sealants, etc. With the current working temperature being limited to mainly above zero Celsius, applications for subzero Celsius environments are obstructed. In addition, current reversible actuation needs a constant tensile load, or for the best case, under zero tensile load. Reversible EUC and CUH under compressive load is almost impossible and has not been explored. In this work, acispoly(1,4-butadiene) based system has been developed. Actuated below zero Celsius, 69% EUC occurred under a tensile load; and 6.2% EUC and 17.9% CUH occurred under 0.05 MPa compressive load. The reversible actuation was driven by both entropy and enthalpy, which was validated by a series of characterization tools.
more »
« less
- Award ID(s):
- 1647650
- PAR ID:
- 10153712
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 8
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Diarylethene‐functionalized liquid‐crystalline elastomers (DAE‐LCEs) containing thiol‐anhydride bonds were prepared and shown to undergo reversible, reprogrammable photoinduced actuation. Upon exposure to UV light, a monodomain DAE‐LCE generated 5.5 % strain. This photogenerated strain was demonstrated to be optically reversible over five cycles of alternating UV/Visible light exposure with minimal photochrome fatigue. The incorporation of thiol‐anhydride dynamic bonds allowed for retention of actuated states. Further, re‐programming of the nematic director was achieved by heating above the temperature for bond exchange to occur (70 °C) yet below the nematic‐to‐isotropic transition temperature (100 °C) such that order was maintained between mesogens. The observed thermal stability of each of the diarylethene isomers of over 72 h allowed for decoupling of photo‐induced processes and polymer network effects, showing that both polymer relaxation and back‐isomerization of the diarylethene contributed to LCE relaxation over a period of 12 hours after actuation unless bond exchange occurred.more » « less
-
Abstract As a means to elucidate the mechanical stress effect on the durability of soda lime silicate (SLS) float glass, a thin glass plate under flexural stress was investigated with X‐ray photoelectron spectroscopy (XPS), specular reflectance infrared (SR‐IR) spectroscopy, nanoindentation, and tribo‐testing. A lab‐built four‐point bending rig was employed to create compressive or tensile stress (around 40 MPa) on the air‐side surface of SLS glass. XPS analysis showed that electric field‐induced sodium ion migration is greatly enhanced in both compressive and tensile stress surfaces. The SR‐IR analysis of the Si‐O‐Si stretch mode revealed that the structural distortion of the silicate network appears to be larger under compressive stress than tensile stress. The elastic and plastic responses of the SLS surface to nanoindentation were significantly altered under the flexural stress conditions even though the magnitude of the flexural stress was less than 0.7% of the applied indentation stress. Compared to the stress‐free surface, the resistance to mechanochemical wear at 90% relative humidity deteriorated under the compressive stress condition, while it just became more scattered under the tensile stress condition. Even though the applied flexural stress was very small, its impact on chemical and structural properties could be surprisingly large. Combining all results in this study and previously published works suggested that the changes observed in nanoindentation and mechanochemical wear behaviors may be associated with the strain in the Si‐O bonds of the silicate network.more » « less
-
In this study, we measured the tensile, compression, and fatigue behavior of additively manufactured Ti3Al2V as a function of build orientation. Ti3Al2V alloy was prepared by mixing commercially pure titanium and Ti6Al4V in 1:1 wt. ratio. Laser powder bed fusion-based additive manufacturing technique was used to fabricate the samples. Tensile tests resulted in an ultimate strength of 989 ± 8 MPa for Ti3Al2V. Ti6Al4V 90° orientation samples showed a compressive yield strength of 1178 ± 33 MPa and that for Ti3Al2V 90° orientation samples were 968 ± 24 MPa. By varying the build orientation to account for anisotropy, Ti32 45° and Ti32 0° samples displayed almost similar compressive yield strength values of 1071 ± 16 and 1051 ± 18 MPa, respectively, which were higher than that of Ti32 90° sample. Fatigue loading revealed an endurance limit (10 million cycles) of 250 MPa for Ti6Al4V and of 219 MPa for Ti3Al2V built at 90° orientation. The effect of the build orientation was significant under fatigue loading; Ti3Al2V built at 45° and 0° orientations displayed endurance limits of 387.5 MPa and 512 MPa, respectively; more than two-fold increment in endurance limit was observed. In conclusion, the superior attributes of Ti3Al2V alloy over Ti6Al4V alloy, as demonstrated in this study, justify its potential in load-bearing applications, particularly for use in orthopedic devices.more » « less
-
Abstract Equatorial islands have distinct oceanographic signatures, including cool sea surface temperature and high productivity immediately to their west. It has long been hypothesized that topographic upwelling is responsible for such characteristics—upward deflection by the islands of the eastward‐flowing equatorial undercurrent (EUC). Using 22 years of in situ measurements by Argo, we provide the first direct observations of this process occurring with consistency at two prominent archipelagos in the equatorial Pacific. Argo measurements resolve a clear subsurface thermal fingerprint of vertical divergence at the depth of the EUC, confined to within 100 km of both the Gilbert (∼175°E) and Galápagos Islands (∼90°W). This signal at the Galápagos is well‐reproduced by a high‐resolution ocean reanalysis, enabling the estimation of vertical velocities balancing the zonal convergence of the EUC upon the islands. This sharpened view of the physics underpinning such important tropical ecosystems has implications for strategies to model and predict them.more » « less
An official website of the United States government
