skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Fatigue behavior of additively manufactured Ti3Al2V alloy

In this study, we measured the tensile, compression, and fatigue behavior of additively manufactured Ti3Al2V as a function of build orientation. Ti3Al2V alloy was prepared by mixing commercially pure titanium and Ti6Al4V in 1:1 wt. ratio. Laser powder bed fusion-based additive manufacturing technique was used to fabricate the samples. Tensile tests resulted in an ultimate strength of 989 ± 8 MPa for Ti3Al2V. Ti6Al4V 90° orientation samples showed a compressive yield strength of 1178 ± 33 MPa and that for Ti3Al2V 90° orientation samples were 968 ± 24 MPa. By varying the build orientation to account for anisotropy, Ti32 45° and Ti32 0° samples displayed almost similar compressive yield strength values of 1071 ± 16 and 1051 ± 18 MPa, respectively, which were higher than that of Ti32 90° sample. Fatigue loading revealed an endurance limit (10 million cycles) of 250 MPa for Ti6Al4V and of 219 MPa for Ti3Al2V built at 90° orientation. The effect of the build orientation was significant under fatigue loading; Ti3Al2V built at 45° and 0° orientations displayed endurance limits of 387.5 MPa and 512 MPa, respectively; more than two-fold increment in endurance limit was observed. In conclusion, the superior attributes of Ti3Al2V alloy over Ti6Al4V alloy, as demonstrated in this study, justify its potential in load-bearing applications, particularly for use in orthopedic devices.

 
more » « less
Award ID(s):
1934230
NSF-PAR ID:
10536680
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACCScience Publishing
Date Published:
Journal Name:
Materials Science in Additive Manufacturing
Volume:
2
Issue:
3
ISSN:
2810-9635
Page Range / eLocation ID:
1705
Subject(s) / Keyword(s):
Additive manufacturing Titanium alloys Alloy design Load-beating implants Fatigue behavior.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The demand for advanced materials has driven innovation in titanium alloy design, particularly in the aerospace, automotive, and biomedical sectors. Additive manufacturing (AM) enables the construction of multi-material structures, offering potential improvements in mechanical properties such as wear resistance and high-temperature capabilities, thus extending the service life of components such as Ti6Al4V. Directed energy deposition (DED)-based metal AM was used to manufacture radial multi-material structures with a Ti6Al4V (Ti64) core and a Ti6Al4V-5 wt.% B4C composite outer layer. X-ray diffraction analysis and microstructural observation suggest that distinct B4C particles are strongly attached to the Ti6Al4V matrix. The addition of B4C increased the average hardness from 313 HV for Ti6Al4V to 538 HV for the composites. The addition of 5 wt.% B4C in Ti6Al4V increased the average compressive yield strength (YS) to 1440 MPa from 972 MPa for the control Ti6Al4V, i.e., >48% increase without any significant change in the elastic modulus. The radial multi-material structures did not exhibit any changes in the compressive modulus compared to Ti6Al4V but displayed an increase in the average compressive YS to 1422 MPa, i.e., >45% higher compared to Ti6Al4V. Microstructural characterization revealed a smooth transition from the pure Ti6Al4V at the core to the Ti64-B4C composite outer layer. No interfacial failure was observed during compressive deformation, indicating a strong metallurgical bonding during multi-material radial composite processing. Our results demonstrated that a significant improvement in mechanical properties can be achieved in one AM build operation through designing innovative multi-material structures using DED-based AM.

     
    more » « less
  2. Abstract This work studies the use of laser shock peening (LSP) to improve back stress in additively manufactured (AM) 316L parts. Unusual hardening behavior in AM metal due to tortuous microstructure and strong texture poses additional design challenges. Anisotropic mechanical behavior complicates application for mechanical design because 3D printed parts will behave differently than traditionally manufactured parts under the same loading conditions. The prevalence of back-stress hardening or the Bauschinger effect causes reduced fatigue life under random loading and dissipates beneficial compressive residual stresses that prevent crack propagation. LSP is known to improve fatigue life by inducing compressive residual stress and has been applied with promising results to AM metal parts. It is here demonstrated that LSP may also be used as a tool for mitigating tensile back-stress hardening in AM parts, thereby reducing anisotropic hardening behavior and improving design use. It is also shown that the method of application of LSP to additively manufactured parts is key for achieving effective back-stress reduction. Back stress is extracted from additively manufactured dog bone samples built in both XY and XZ directions using hysteresis tensile. Both LSPed and as-built conditions are tested and compared, showing that LSPed samples exhibit a significant reduction to back stress when the laser processing is applied to the sample along the build direction. Electron backscatter diffraction (EBSD) performed under these conditions elucidates how grain morphologies and texture contribute to the observed improvement. Crystal plasticity finite element (CPFE) modeling develops insights as to the mechanisms by which this reduction is achieved in comparison with EBSD results. In particular, the difference in plastic behavior across build orientations of identified crystal planes and grain families are shown to impact the degree of LSP-induced back-stress reduction that is sustained through tensile loading. 
    more » « less
  3. A comprehensive experimental investigation is performed to understand the damage sensing capabilities of thermoplastic intra-ply carbon/glass laminated composites embedded with Carbon Nanotubes (CNTs) under quasi-static interlaminar shear and mode-I fracture loading conditions. CNTs are dispersed in thermoplastic Elium® resin using a combination of ultrasonication and shear mixing processes. This resin mix is used in a vacuum infusion process to fabricate four different intra-ply laminated composites orientations; G-0-C-90 [Carbon fibers are in the longitudinal direction], G-90-C-0 [Glass fibers are in the longitudinal direction], G-45-C-45(R) [carbon and glass fibers are at +45°, and −45° from the longitudinal direction and form a repeating layup], and G-45-C-45(A) [carbon and glass fibers are at +45°, and −45°, but with alternating directions for each lamina in the layup]. Four-circumferential probes are utilized to obtain the piezo-resistance measurements associated with damage inside the composites under shear and mode-I loadings. In the shear experimentation, the G-45-C-45(A) orientation demonstrated the largest interlaminar shear strength, at 50% greater than the G-45-C-45(R) orientation. Both G-45-C-45(A) and G-45-C-45(R) had significantly larger shear strains compared to the G-90-C-0 and G-0-C-90 orientations. However, the best resolution in shear damage sensing was seen with the G-0-C-90 composites. In the mode-I fracture experiments, the greatest fracture initiation toughness is shown with the G-0-C-90 orientation, which is 80% greater than the G-90-C-0 orientation. Compared to all orientations, the G-0-C-90 orientation also provided the most sensitive electrical response.

     
    more » « less
  4. null (Ed.)
    The deformation behavior of the extruded magnesium alloys Mg2Nd and Mg2Yb was investigated at room temperature. By using in situ energy-dispersive synchrotron X-ray diffraction compression and tensile tests, accompanied by Elasto-Plastic Self-Consistent (EPSC) modeling, the differences in the active deformation systems were analyzed. Both alloying elements change and weaken the extrusion texture and form precipitates during extrusion and subsequent heat treatments relative to common Mg alloys. By varying the extrusion parameters and subsequent heat treatment, the strengths and ductility can be adjusted over a wide range while still maintaining a strength differential effect (SDE) of close to zero. Remarkably, the compressive and tensile yield strengths are similar and there is no mechanical anisotropy when comparing tensile and compressive deformation, which is desirable for industrial applications. Uncommon for Mg alloys, Mg2Nd shows a low tensile twinning activity during compression tests. We show that heat treatments promote the nucleation and growth of precipitates and increase the yield strengths isotopically up to 200 MPa. The anisotropy of the yield strength is reduced to a minimum and elongations to failure of about 0.2 are still achieved. At lower strengths, elongations to failure of up to 0.41 are reached. In the Mg2Yb alloy, adjusting the extrusion parameters enhances the rare-earth texture and reduces the grain size. Excessive deformation twinning is, however, observed, but despite this the SDE is still minimized. 
    more » « less
  5. The local yielding behavior in base metal, heat-affected zone, fusion boundary region, and weld metal of low-alloy steel/Alloy 625 filler metal welds was quantified using digital image correlation instrumented cross-weld tensile test. The tested welds exhibited undermatching, matching, or overmatching weld metal yield strength with significant gradients in the local yielding behavior. An undermatching weld yielded at 69 MPa below the base metal yield stress, accumulating to 0.72% total strain. The base metal in an overmatching weld had 110 MPa lower yield strength than the weld metal. The strong strain hardening response in the Alloy 625 weld metal, within the uniform elongation range, and its constraining effect on the fusion boundary region and heat affected zone, led to extensive strain accumulation, necking, and final failure in the base metal of all tested welds. The yielding behavior of the tested welds was compared to stress-based criteria, utilizing minimum specified and as-delivered yield and ultimate tensile strength, and to strain-based criteria. The capability of digital image correlation instrumented cross-weld tensile testing to quantify local yielding and strain accumulation demonstrates potential application in proving conformity to stress-based and strain-based design criteria of dissimilar and matching filler metal welds. 
    more » « less