Computational simulation of biomolecules can provide important insights into protein design, protein-ligand binding interactions, and ab initio biomolecular folding, among other applications. Accurate treatment of the solvent environment is essential in such applications, but the use of explicit solvents can add considerable cost. Implicit treatment of solvent effects using a dielectric continuum model is an attractive alternative to explicit solvation since it is able to describe solvation effects without the inclusion of solvent degrees of freedom. Previously, we described the development and parameterization of implicit solvent models for small molecules. Here, we extend the parameterization of the generalized Kirkwood (GK) implicit solvent model for use with biomolecules described by the AMOEBA force field via the addition of corrections to the calculation of effective radii that account for interstitial spaces that arise within biomolecules. These include element-specific pairwise descreening scale factors, a short-range neck contribution to describe the solvent-excluded space between pairs of nearby atoms, and finally tanh-based rescaling of the overall descreening integral. We then apply the AMOEBA/GK implicit solvent to a set of ten proteins and achieve an average coordinate root mean square deviation for the experimental structures of 2.0 Å across 500 ns simulations. Overall, the continued development of implicit solvent models will help facilitate the simulation of biomolecules on mechanistically relevant timescales.
more »
« less
Atomistic Peptide Folding Simulations Reveal Interplay of Entropy and Long-Range Interactions in Folding Cooperativity
Abstract Understanding how proteins fold has remained a problem of great interest in biophysical research. Atomistic computer simulations using physics-based force fields can provide important insights on the interplay of different interactions and energetics and their roles in governing the folding thermodynamics and mechanism. In particular, generalized Born (GB)-based implicit solvent force fields can be optimized to provide an appropriate balance between solvation and intramolecular interactions and successfully recapitulate experimental conformational equilibria for a set of helical and β-hairpin peptides. Here, we further demonstrate that key thermodynamic properties and their temperature dependence obtained from replica exchange molecular dynamics simulations of these peptides are in quantitative agreement with experimental results. Useful lessons can be learned on how the interplay of entropy and sequentially long-range interactions governs the mechanism and cooperativity of folding. These results highlight the great potential of high-quality implicit solvent force fields for studying protein folding and large-scale conformational transitions.
more »
« less
- Award ID(s):
- 1817332
- PAR ID:
- 10153714
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 8
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Performing full-resolution atomistic simulations of nucleic acid folding has remained a challenge for biomolecular modeling. Understanding how nucleic acids fold and how they transition between different folded structures as they unfold and refold has important implications for biology. This paper reports a theoretical model and computer simulation of the ab initio folding of DNA inverted repeat sequences. The formulation is based on an all-atom conformational model of the sugar-phosphate backbone via chain closure, and it incorporates three major molecular-level driving forces—base stacking, counterion-induced backbone self-interactions, and base pairing—via separate analytical theories designed to capture and reproduce the effects of the solvent without requiring explicit water and ions in the simulation. To accelerate computational throughput, a mixed numerical/analytical algorithm for the calculation of the backbone conformational volume is incorporated into the Monte Carlo simulation, and special stochastic sampling techniques were employed to achieve the computational efficiency needed to fold nucleic acids from scratch. This paper describes implementation details, benchmark results, and the advantages and technical challenges with this approach.more » « less
-
This paper proposes a sign gradient descent (SGD) algorithm for predicting the three-dimensional folded protein molecule structures under the kinetostatic compliance method (KCM). In the KCM framework, which can be used to simulate the range of motion of peptide-based nanorobots/nanomachines, protein molecules are modeled as a large number of rigid nano-linkages that form a kinematic mechanism under motion constraints imposed by chemical bonds while folding under the kinetostatic effect of nonlinear interatomic force fields. In a departure from the conventional successive kinetostatic fold compliance framework, the proposed SGD-based iterative algorithm in this paper results in convergence to the local minima of the free energy of protein molecules corresponding to their final folded conformations in a faster and more robust manner. KCM-based folding dynamics simulations of the backbone chains of protein molecules demonstrate the effectiveness of the proposed algorithm.more » « less
-
Abstract We present a new class of DNA‐based nanoswitches that, upon enzymatic repair, could undergo a conformational change mechanism leading to a change in fluorescent signal. Such folding‐upon‐repair DNA nanoswitches are synthetic DNA sequences containingO6‐methyl‐guanine (O6‐MeG) nucleobases and labelled with a fluorophore/quencher optical pair. The nanoswitches are rationally designed so that only upon enzymatic demethylation of theO6‐MeG nucleobases they can form stable intramolecular Hoogsteen interactions and fold into an optically active triplex DNA structure. We have first characterized the folding mechanism induced by the enzymatic repair activity through fluorescent experiments and Molecular Dynamics simulations. We then demonstrated that the folding‐upon‐repair DNA nanoswitches are suitable and specific substrates for different methyltransferase enzymes including the human homologue (hMGMT) and they allow the screening of novel potential methyltransferase inhibitors.more » « less
-
Sign Gradient Descent Algorithms for Accelerated Kinetostatic Protein Folding in Nanorobotics DesignNumerical simulations of protein folding enable the design of protein-based nanomachines and nanorobots by predicting folded three-dimensional protein structures with high accuracy and revealing the protein conformation transitions during folding and unfolding. In the kinetostatic compliance method (KCM) for folding simulations, protein molecules are represented as ensembles of rigid nano-linkages connected by chemical bonds, and the folding process is driven by the kinetostatic influence of nonlinear interatomic force fields until the system converges to a free-energy minimum of the protein. Despite its strengths, the conventional KCM framework demands an excessive number of iterations to reach folded protein conformations, with each iteration requiring costly computations of interatomic force fields. To address these limitations, this work introduces a family of sign gradient descent (SGD) algorithms for predicting folded protein structures. Unlike the heuristic-based iterations of the conventional KCM framework, the proposed SGD algorithms rely on the sign of the free-energy gradient to guide the kinetostatic folding process. Owing to their faster and more robust convergence, the proposed SGD-based algorithms reduce the computational burden of interatomic force field evaluations required to reach folded conformations. Their effectiveness is demonstrated through numerical simulations of KCM-based folding of protein backbone chains.more » « less
An official website of the United States government
