skip to main content


This content will become publicly available on August 7, 2024

Title: A generalized Kirkwood implicit solvent for the polarizable AMOEBA protein model
Computational simulation of biomolecules can provide important insights into protein design, protein-ligand binding interactions, and ab initio biomolecular folding, among other applications. Accurate treatment of the solvent environment is essential in such applications, but the use of explicit solvents can add considerable cost. Implicit treatment of solvent effects using a dielectric continuum model is an attractive alternative to explicit solvation since it is able to describe solvation effects without the inclusion of solvent degrees of freedom. Previously, we described the development and parameterization of implicit solvent models for small molecules. Here, we extend the parameterization of the generalized Kirkwood (GK) implicit solvent model for use with biomolecules described by the AMOEBA force field via the addition of corrections to the calculation of effective radii that account for interstitial spaces that arise within biomolecules. These include element-specific pairwise descreening scale factors, a short-range neck contribution to describe the solvent-excluded space between pairs of nearby atoms, and finally tanh-based rescaling of the overall descreening integral. We then apply the AMOEBA/GK implicit solvent to a set of ten proteins and achieve an average coordinate root mean square deviation for the experimental structures of 2.0 Å across 500 ns simulations. Overall, the continued development of implicit solvent models will help facilitate the simulation of biomolecules on mechanistically relevant timescales.  more » « less
Award ID(s):
1751688
NSF-PAR ID:
10437302
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
159
Issue:
5
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Water engages in two important types of interactions near biomolecules: it forms ordered “cages” around exposed hydrophobic regions, and it participates in hydrogen bonds with surface polar groups. Both types of interaction are critical to biomolecular structure and function, but explicitly including an appropriate number of solvent molecules makes many applications computationally intractable. A number of implicit solvent models have been developed to address this problem, many of which treat these two solvation effects separately. Here, we describe a new model to capture polar solvation effects, called SHO (“solvent hydrogen‐bond occlusion”); our model aims to directly evaluate the energetic penalty associated with displacing discrete first‐shell water molecules near each solute polar group. We have incorporated SHO into the Rosetta energy function, and find that scoring protein structures with SHO provides superior performance in loop modeling, virtual screening, and protein structure prediction benchmarks. These improvements stem from the fact that SHO accurately identifies and penalizes polar groups that do not participate in hydrogen bonds, either with solvent or with other solute atoms (“unsatisfied” polar groups). We expect that in future, SHO will enable higher‐resolution predictions for a variety of molecular modeling applications. © 2017 Wiley Periodicals, Inc.

     
    more » « less
  2. Monte Carlo (MC) methods are important computational tools for molecular structure optimizations and predictions. When solvent effects are explicitly considered, MC methods become very expensive due to the large degree of freedom associated with the water molecules and mobile ions. Alternatively implicit-solvent MC can largely reduce the computational cost by applying a mean field approximation to solvent effects and meanwhile maintains the atomic detail of the target molecule. The two most popular implicit-solvent models are the Poisson-Boltzmann (PB) model and the Generalized Born (GB) model in a way such that the GB model is an approximation to the PB model but is much faster in simulation time. In this work, we develop a machine learning-based implicit-solvent Monte Carlo (MLIMC) method by combining the advantages of both implicit solvent models in accuracy and efficiency. Specifically, the MLIMC method uses a fast and accurate PB-based machine learning (PBML) scheme to compute the electrostatic solvation free energy at each step. We validate our MLIMC method by using a benzene-water system and a protein-water system. We show that the proposed MLIMC method has great advantages in speed and accuracy for molecular structure optimization and prediction. 
    more » « less
  3. Accurate treatment of solvent environment is critical for reliable simulations of protein conformational equilibria. Implicit treatment of solvation, such as using the generalized Born (GB) class of models arguably provides an optimal balance between computational efficiency and physical accuracy. Yet, GB models are frequently plagued by a tendency to generate overly compact structures. The physical origins of this drawback are relatively well understood, and the key to a balanced implicit solvent protein force field is careful optimization of physical parameters to achieve a sufficient level of cancellation of errors. The latter has been hampered by the difficulty of generating converged conformational ensembles of non‐trivial model proteins using the popular replica exchange sampling technique. Here, we leverage improved sampling efficiency of a newly developed multi‐scale enhanced sampling technique to re‐optimize the generalized‐Born with molecular volume (GBMV2) implicit solvent model with the CHARMM36 protein force field. Recursive optimization of key GBMV2 parameters (such as input radii) and protein torsion profiles (via the CMAP torsion cross terms) has led to a more balanced GBMV2 protein force field that recapitulates the structures and stabilities of both helical and β‐hairpin model peptides. Importantly, this force field appears to be free of the over‐compaction bias, and can generate structural ensembles of several intrinsically disordered proteins of various lengths that seem highly consistent with available experimental data. © 2017 Wiley Periodicals, Inc.

     
    more » « less
  4. Abstract

    Solvation effects profoundly influence the characteristics and behavior of chemical systems in liquid solutions. The interaction between solute and solvent molecules intricately impacts solubility, reactivity, stability, and various chemical processes. Continuum solvation models gained prominence in quantum chemistry by implicitly capturing these interactions and enabling efficient investigations of diverse chemical systems in solution. In comparison, continuum solvation models in condensed matter simulation are very recent. Among these, the self‐consistent continuum solvation (SCCS) and the soft‐sphere continuum solvation models (SSCS) have been among the first to be successfully parameterized and extended to model periodic systems in aqueous solutions and electrolytes. As most continuum approaches, these models depend on a number of parameters that are linked to experimental or theoretical properties of the solvent, or that can be tuned based on reference data. Here, we present a systematic parameterization of the SSCS model for over 100 nonaqueous solvents. We validate the model's efficacy across diverse solvent environments by leveraging experimental solvation‐free energies and partition coefficients from comprehensive databases. The average root means square error over all the solvents was calculated as 0.85 kcal/mol which is below the chemical accuracy (1 kcal/mol). Similarly to what has been reported by Hille et al. (J. Chem. Phys.2019,150, 041710.) for the SCCS model, a single‐parameter model accurately reproduces experimental solvation energies, showcasing the transferability and predictive power of these continuum approaches. Our findings underscore the potential for a unified approach to predict solvation properties, paving the way for enhanced computational studies across various chemical environments.

     
    more » « less
  5. Abstract

    Improvements in the description of amino acid substitution are required to develop better pseudo‐energy‐based protein structure‐aware models for use in phylogenetic studies. These models are used to characterize the probabilities of amino acid substitution and enable better simulation of protein sequences over a phylogeny. A better characterization of amino acid substitution probabilities in turn enables numerous downstream applications, like detecting positive selection, ancestral sequence reconstruction, and evolutionarily‐motivated protein engineering. Many existing Markov models for amino acid substitution in molecular evolution disregard molecular structure and describe the amino acid substitution process over longer evolutionary periods poorly. Here, we present a new model upgraded with a site‐specific parameterization of pseudo‐energy terms in a coarse‐grained force field, which describes local heterogeneity in physical constraints on amino acid substitution better than a previous pseudo‐energy‐based model with minimum cost in runtime. The importance of each weight term parameterization in characterizing underlying features of the site, including contact number, solvent accessibility, and secondary structural elements was evaluated, returning both expected and biologically reasonable relationships between model parameters. This results in the acceptance of proposed amino acid substitutions that more closely resemble those observed site‐specific frequencies in gene family alignments. The modular site‐specific pseudo‐energy function is made available for download through the following website:https://liberles.cst.temple.edu/Software/CASS/index.html.

     
    more » « less