skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ab initio electron-two-phonon scattering in GaAs from next-to-leading order perturbation theory
Abstract Electron-phonon (e–ph) interactions are usually treated in the lowest order of perturbation theory. Here we derive next-to-leading ordere–ph interactions, and compute from first principles the associated electron-two-phonon (2ph) scattering rates. The derivations involve Matsubara sums of two-loop Feynman diagrams, and the numerical calculations are challenging as they involve Brillouin zone integrals over two crystal momenta and depend critically on the intermediate state lifetimes. Using Monte Carlo integration together with a self-consistent update of the intermediate state lifetimes, we compute and converge the 2ph scattering rates, and analyze their energy and temperature dependence. We apply our method to GaAs, a weakly polar semiconductor with dominant optical-mode long-rangee–ph interactions. We find that the 2ph scattering rates are as large as nearly half the value of the one-phonon rates, and that including the 2ph processes is necessary to accurately predict the electron mobility in GaAs from first principles.  more » « less
Award ID(s):
1642443
PAR ID:
10153817
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
11
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Charge transport in organic molecular crystals (OMCs) is conventionally categorized into two limiting regimes − band transport, characterized by weak electron-phonon (e-ph) interactions, and charge hopping due to localized polarons formed by strong e-ph interactions. However, between these two limiting cases there is a less well understood intermediate regime where polarons are present but transport does not occur via hopping. Here we show a many-body first-principles approach that can accurately predict the carrier mobility in this intermediate regime and shed light on its microscopic origin. Our approach combines a finite-temperature cumulant method to describe strong e-ph interactions with Green-Kubo transport calculations. We apply this parameter-free framework to naphthalene crystal, demonstrating electron mobility predictions within a factor of 1.5−2 of experiment between 100 and 300 K. Our analysis reveals the formation of a broad polaron satellite peak in the electron spectral function and the failure of the Boltzmann equation in the intermediate regime. 
    more » « less
  2. Modeling spin-wave (magnon) dynamics in novel materials is important to advance spintronics and spin-based quantum technologies. The interactions between magnons and lattice vibrations (phonons) limit the length scale for magnon transport. However, quantifying these interactions remains challenging. Here we show many-body calculations of magnon-phonon (mag-ph) coupling based on the ab initio Bethe-Salpeter equation. We derive expressions for mag-ph coupling matrices and compute them in 2D ferromagnets, focusing on hydrogenated graphene and monolayer CrI3. Our analysis shows that electron-phonon (e-ph) and mag-ph interactions differ significantly, where modes with weak e-ph coupling can exhibit strong mag-ph coupling (and vice versa), and reveals which phonon modes couple more strongly with magnons. In both materials studied here, the inelastic magnon relaxation time is found to decrease abruptly above the threshold for emission of strongly coupled phonons, thereby defining a low-energy window for efficient magnon transport. By averaging in this window, we compute the temperature-dependent magnon mean-free path, a key figure of merit for spintronics, entirely from first principles. The theory and computational tools shown in this work enable studies of magnon interactions, scattering, and dynamics in generic materials, advancing the design of magnetic systems and magnon- and spin-based devices. 
    more » « less
  3. First-principles calculations of electron interactions in materials have seen rapid progress in recent years, with electron-phonon (e-ph) interactions being a prime example. However, these techniques use large matrices encoding the interactions on dense momentum grids, which reduces computational efficiency and obscures interpretability. For e-ph interactions, existing interpolation techniques leverage locality in real space, but the high dimensionality of the data remains a bottleneck to balance cost and accuracy. Here we show an efficient way to compress e-ph interactions based on singular value decomposition (SVD), a widely used matrix and image compression technique. Leveraging (un)constrained SVD methods, we accurately predict material properties related to e-ph interactions—including charge mobility, spin relaxation times, band renormalization, and superconducting critical temperature—while using only a small fraction (1%–2%) of the interaction data. These findings unveil the hidden low-dimensional nature of e-ph interactions. Furthermore, they accelerate state-of-the-art first-principles e-ph calculations by about 2 orders of magnitude without sacrificing accuracy. Our Pareto-optimal parametrization of e-ph interactions can be readily generalized to electron-electron and electron-defect interactions, as well as to other couplings, advancing quantitative studies of condensed matter. 
    more » « less
  4. This repo contains the data files for the paper J. Thomas et al., Theory of electron-phonon interactions in extended correlated systems probed by resonant inelastic x-ray scattering. Physical Review X, in press (2025) Preprint: https://arxiv.org/abs/2412.12995 Abstract: An emerging application of resonant inelastic x-ray scattering (RIXS) is the study of lattice excitations and electron-phonon (e-ph) interactions in quantum materials. Despite the growing importance of this area of research, the community lacks a complete understanding of how the RIXS process excites the lattice and how these excitations encode information about the e-ph interactions. Here, we present a detailed study of the RIXS spectra of the Hubbard-Holstein model defined on extended one-dimensional lattices. Using the density matrix renormalization group (DMRG) method, we compute the RIXS response while treating the electron mobility, many-body interactions, and core-hole interactions on an equal footing. The predicted spectra exhibit notable differences from those obtained using the commonly adopted Lang-Firsov models, with important implications for analyzing past and future experiments. Our results provide a deeper understanding of how RIXS probes e-ph interactions and set the stage for a more realistic analysis of future experiments. 
    more » « less
  5. Understanding electronic interactions in high-temperature superconductors is an outstanding challenge. In the widely studied cuprate materials, experimental evidence points to strong electron-phonon ( e -ph) coupling and broad photoemission spectra. Yet, the microscopic origin of this behavior is not fully understood. Here, we study e -ph interactions and polarons in a prototypical parent (undoped) cuprate, La 2 CuO 4 (LCO), by means of first-principles calculations. Leveraging parameter-free Hubbard-corrected density functional theory, we obtain a ground state with the band gap and Cu magnetic moment in nearly exact agreement with experiments. This enables a quantitative characterization of e -ph interactions. Our calculations reveal two classes of longitudinal optical (LO) phonons with strong e -ph coupling to hole states. These modes consist of bond stretching and bond bending in the Cu-O plane as well as vibrations of apical O atoms. The hole spectral functions, obtained with a cumulant method that can capture strong e -ph coupling, exhibit broad quasiparticle peaks with a small spectral weight ( Z 0.25 ) and pronounced LO-phonon sidebands characteristic of polaron effects. Our calculations predict features observed in photoemission spectra, including a 40-meV peak in the e -ph coupling distribution function not explained by existing models. These results show that the universal strong e -ph coupling found experimentally in doped lanthanum cuprates is also present in the parent compound, and elucidate its microscopic origin. 
    more » « less