skip to main content


Title: Ab initio electron-two-phonon scattering in GaAs from next-to-leading order perturbation theory
Abstract

Electron-phonon (e–ph) interactions are usually treated in the lowest order of perturbation theory. Here we derive next-to-leading ordere–ph interactions, and compute from first principles the associated electron-two-phonon (2ph) scattering rates. The derivations involve Matsubara sums of two-loop Feynman diagrams, and the numerical calculations are challenging as they involve Brillouin zone integrals over two crystal momenta and depend critically on the intermediate state lifetimes. Using Monte Carlo integration together with a self-consistent update of the intermediate state lifetimes, we compute and converge the 2ph scattering rates, and analyze their energy and temperature dependence. We apply our method to GaAs, a weakly polar semiconductor with dominant optical-mode long-rangee–ph interactions. We find that the 2ph scattering rates are as large as nearly half the value of the one-phonon rates, and that including the 2ph processes is necessary to accurately predict the electron mobility in GaAs from first principles.

 
more » « less
Award ID(s):
1642443
NSF-PAR ID:
10153817
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
11
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Charge transport in organic molecular crystals (OMCs) is conventionally categorized into two limiting regimes − band transport, characterized by weak electron-phonon (e-ph) interactions, and charge hopping due to localized polarons formed by strong e-ph interactions. However, between these two limiting cases there is a less well understood intermediate regime where polarons are present but transport does not occur via hopping. Here we show a many-body first-principles approach that can accurately predict the carrier mobility in this intermediate regime and shed light on its microscopic origin. Our approach combines a finite-temperature cumulant method to describe strong e-ph interactions with Green-Kubo transport calculations. We apply this parameter-free framework to naphthalene crystal, demonstrating electron mobility predictions within a factor of 1.5−2 of experiment between 100 and 300 K. Our analysis reveals the formation of a broad polaron satellite peak in the electron spectral function and the failure of the Boltzmann equation in the intermediate regime.

     
    more » « less
  2. Abstract Charge transport in organic molecular crystals (OMCs) is conventionally categorized into two limiting regimes − band transport, characterized by weak electron-phonon (e-ph) interactions, and charge hopping due to localized polarons formed by strong e-ph interactions. However, between these two limiting cases there is a less well understood intermediate regime where polarons are present but transport does not occur via hopping. Here we show a many-body first-principles approach that can accurately predict the carrier mobility in this intermediate regime and shed light on its microscopic origin. Our approach combines a finite-temperature cumulant method to describe strong e-ph interactions with Green-Kubo transport calculations. We apply this parameter-free framework to naphthalene crystal, demonstrating electron mobility predictions within a factor of 1.5−2 of experiment between 100 and 300 K. Our analysis reveals the formation of a broad polaron satellite peak in the electron spectral function and the failure of the Boltzmann equation in the intermediate regime. 
    more » « less
  3. Abstract

    The Zintl compound TlInTe2is an intriguing material because of its outstanding thermoelectric properties at ambient pressure. Interestingly, it has recently been found that TlInTe2exhibits a V-shape dependence of the superconducting critical temperature (Tc) under increasing pressure, which has been linked to the reversed behavior of the Raman active Agphonon mode and anharmonic effects. In this study, we have performed first-principles calculations of the electron-phonon interactions and the superconducting properties of TlInTe2in order to understand this unusual pressure-induced response. In contrast to experiment, we find a dome-shaped pressure-induced dependence ofTcwith a maximum value of 0.23 K at 18 GPa, significantly lower than the experimental results. Electron doping has the potential to adjust theTcto fall within the experimental range, but it necessitates considerably high levels of doping. Furthermore, our analyses of the phonon spectra and phonon lifetimes, including anharmonic effects, show that anharmonicity is unlikely to influence the superconducting properties of TlInTe2. It remains an open question whether there is indeed an unusual V-shapeTcdependence with pressure or whether the phonon-mediated theory of superconductivity used here breaks down in this system.

     
    more » « less
  4. Hybrid organic–inorganic perovskites (HOIPs) have become an important class of semiconductors for solar cells and other optoelectronic applications. Electron–phonon coupling plays a critical role in all optoelectronic devices, and although the lattice dynamics and phonon frequencies of HOIPs have been well studied, little attention has been given to phonon lifetimes. We report high-precision momentum-resolved measurements of acoustic phonon lifetimes in the hybrid perovskite methylammonium lead iodide (MAPI), using inelastic neutron spectroscopy to provide high-energy resolution and fully deuterated single crystals to reduce incoherent scattering from hydrogen. Our measurements reveal extremely short lifetimes on the order of picoseconds, corresponding to nanometer mean free paths and demonstrating that acoustic phonons are unable to dissipate heat efficiently. Lattice-dynamics calculations using ab initio third-order perturbation theory indicate that the short lifetimes stem from strong three-phonon interactions and a high density of low-energy optical phonon modes related to the degrees of freedom of the organic cation. Such short lifetimes have significant implications for electron–phonon coupling in MAPI and other HOIPs, with direct impacts on optoelectronic devices both in the cooling of hot carriers and in the transport and recombination of band edge carriers. These findings illustrate a fundamental difference between HOIPs and conventional photovoltaic semiconductors and demonstrate the importance of understanding lattice dynamics in the effort to develop metal halide perovskite optoelectronic devices.

     
    more » « less
  5. Abstract

    The Seebeck coefficient and electrical conductivity are two central quantities to be optimized simultaneously in designing thermoelectric materials, and they are determined by the dynamics of carrier scattering. Here a new regime is uncovered where the presence of multiple electron bands with different effective masses, crossing near the Fermi level, leads to strong energy‐dependent carrier lifetimes due to intrinsic electron–phonon scattering. In this anomalous regime, electrical conductivity decreases with carrier concentration, Seebeck coefficient reverses sign even at high doping, and power factor exhibits an unusual second peak. The origin and magnitude of this effect is explained using a general simplified model as well as first‐principles Boltzmann transport calculations in recently discovered half‐Heusler alloys. General design rules for using this paradigm to engineer enhanced performance in thermoelectric materials are identified.

     
    more » « less