skip to main content


Title: Volcanic glass properties from 1459 C.E. volcanic event in South Pole ice core dismiss Kuwae caldera as a potential source
Abstract

A large volcanic sulfate increase observed in ice core records around 1450 C.E. has been attributed in previous studies to a volcanic eruption from the submarine Kuwae caldera in Vanuatu. Both EPMA–WDS (electron microprobe analysis using a wavelength dispersive spectrometer) and SEM–EDS (scanning electron microscopy analysis using an energy dispersive spectrometer) analyses of five microscopic volcanic ash (cryptotephra) particles extracted from the ice interval associated with a rise in sulfate ca. 1458 C.E. in the South Pole ice core (SPICEcore) indicate that the tephra deposits are chemically distinct from those erupted from the Kuwae caldera. Recognizing that the sulfate peak is not associated with the Kuwae volcano, and likely not a large stratospheric tropical eruption, requires revision of the stratospheric sulfate injection mass that is used for parameterization of paleoclimate models. Future work is needed to confirm that a volcanic eruption from Mt. Reclus is one of the possible sources of the 1458 C.E. sulfate anomaly in Antarctic ice cores.

 
more » « less
Award ID(s):
1543361
NSF-PAR ID:
10153827
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
9
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract. Volcanic eruptions are a key source of climatic variability, andreconstructing their past impact can improve our understanding of theoperation of the climate system and increase the accuracy of future climateprojections. Two annually resolved and independently dated palaeoarchives –tree rings and polar ice cores – can be used in tandem to assess thetiming, strength and climatic impact of volcanic eruptions over the past∼ 2500 years. The quantification of post-volcanic climateresponses, however, has at times been hampered by differences betweensimulated and observed temperature responses that raised questions regardingthe robustness of the chronologies of both archives. While manychronological mismatches have been resolved, the precise timing and climaticimpact of two major sulfate-emitting volcanic eruptions during the 1450s CE, including the largest atmospheric sulfate-loading event in the last 700 years, have not been constrained. Here we explore this issue through acombination of tephrochronological evidence and high-resolution ice-corechemistry measurements from a Greenland ice core, the TUNU2013 record. We identify tephra from the historically dated 1477 CE eruption of theIcelandic Veiðivötn–Bárðarbunga volcanic system in directassociation with a notable sulfate peak in TUNU2013 attributed to thisevent, confirming that this peak can be used as a reliable and precisetime marker. Using seasonal cycles in several chemical elements and 1477 CEas a fixed chronological point shows that ages of 1453 CE and 1458 CE can beattributed, with high precision, to the start of two other notablesulfate peaks. This confirms the accuracy of a recent Greenland ice-corechronology over the middle to late 15th century and corroborates thefindings of recent volcanic reconstructions from Greenland and Antarctica.Overall, this implies that large-scale Northern Hemisphere climatic coolingaffecting tree-ring growth in 1453 CE was caused by a Northern Hemispherevolcanic eruption in 1452 or early 1453 CE, and then a Southern Hemisphereeruption, previously assumed to have triggered the cooling, occurred laterin 1457 or 1458 CE. The direct attribution of the 1477 CE sulfate peak to the eruption ofVeiðivötn, one of the most explosive from Iceland in the last 1200 years, also provides the opportunity to assess the eruption's climaticimpact. A tree-ring-based reconstruction of Northern Hemisphere summertemperatures shows a cooling in the aftermath of the eruption of −0.35 ∘C relative to a 1961–1990 CE reference period and−0.1 ∘C relative to the 30-year period around the event, as well as arelatively weak and spatially incoherent climatic response in comparison tothe less explosive but longer-lasting Icelandic Eldgjá 939 CE and Laki1783 CE eruptions. In addition, the Veiðivötn 1477 CE eruptionoccurred around the inception of the Little Ice Age and could be used as achronostratigraphic marker to constrain the phasing and spatial variabilityof climate changes over this transition if it can be traced in moreregional palaeoclimatic archives. 
    more » « less
  2. Abstract

    Decreases in stratospheric NOxassociated with enhanced aerosol have been observed after large volcanic eruptions, for example, after the eruption of Mount Pinatubo in 1991. While the 1991 Mount Pinatubo eruption was the last large explosive eruption, recent studies have shed light on the impacts of moderate‐sized eruptions since the year 2000 on the global stratospheric aerosol budget. We use an ensemble of simulations from a coupled climate‐chemistry model to quantify and analyze changes in NO and NO2(NOx), N2O5, HNO3, ClO, and ClONO2during periods of increased stratospheric volcanic aerosol concentrations since 2000. By using an ensemble approach, we are able to distinguish forced responses from internal variability. We also compare the model ensemble results to satellite measurements of these changes in atmospheric composition, including measurements from the Optical Spectrograph and Infrared Imaging Spectrometer on the Odin satellite and the Aura Microwave Limb Sounder. We find decreases in stratospheric NOxconcentrations up to 20 hPa, consistent with increases in stratospheric HNO3concentrations. The HNO3perturbations also extend higher, up to 5 hPa, associated with periods of increased volcanic aerosol concentrations in both model simulations and observations, though correlations with volcanic aerosol are considerably higher in the model simulations. The model simulates increases in ClO at altitudes and magnitudes similar to the NOxreductions, but this response is below the detectable limit in the available observations (100 pptv). We also demonstrate the value of accounting for transport‐related anomalies of atmospheric trace gases by regression onto N2O anomalies.

     
    more » « less
  3. Abstract

    Volcanic and wildfire events between 2014 and 2022 injected ∼3.2 Tg of sulfur dioxide and 0.8 Tg of smoke aerosols into the stratosphere. With injections at higher altitudes and lower latitudes, the simulated stratospheric lifetime of the 2014–2022 injections is about 50% longer than the volcanic 2005–2013 injections. The simulated global mean effective radiative forcing (ERF) of 2014–2022 is −0.18 W m−2, ∼40% of the ERF of the period of 1991–1999 with a large‐magnitude volcanic eruption (Pinatubo). Our climate model suggests that the stratospheric smoke aerosols generate ∼60% more negative ERF than volcanic sulfate per unit aerosol optical depth. Studies that fail to account for the different radiative properties of wildfire smoke relative to volcanic sulfate will likely underestimate the negative stratospheric forcings. Our analysis suggests that stratospheric injections offset 20% of the increase in global mean surface temperature between 2014–2022 and 1999–2002.

     
    more » « less
  4. Abstract

    Volcanic super-eruptions have been theorized to cause severe global cooling, with the 74 kya Toba eruption purported to have driven humanity to near-extinction. However, this eruption left little physical evidence of its severity and models diverge greatly on the magnitude of post-eruption cooling. A key factor controlling the super-eruption climate response is the size of volcanic sulfate aerosol, a quantity that left no physical record and is poorly constrained by models. Here we show that this knowledge gap severely limits confidence in model-based estimates of super-volcanic cooling, and accounts for much of the disagreement among prior studies. By simulating super-eruptions over a range of aerosol sizes, we obtain global mean responses varying from extreme cooling all the way to the previously unexplored scenario of widespread warming. We also use an interactive aerosol model to evaluate the scaling between injected sulfur mass and aerosol size. Combining our model results with the available paleoclimate constraints applicable to large eruptions, we estimate that global volcanic cooling is unlikely to exceed 1.5°C no matter how massive the stratospheric injection. Super-eruptions, we conclude, may be incapable of altering global temperatures substantially more than the largest Common Era eruptions. This lack of exceptional cooling could explain why no single super-eruption event has resulted in firm evidence of widespread catastrophe for humans or ecosystems.

    Significance Statement

    Whether volcanic super-eruptions pose a threat to humanity remains a subject of debate, with climate models disagreeing on the magnitude of global post-eruption cooling. We demonstrate that this disagreement primarily stems from a lack of constraint on the size of volcanic sulfate aerosol particles. By evaluating the range of aerosol size scenarios, we demonstrate that eruptions may be incapable of causing more than 1.5°C cooling no matter how much sulfur they inject into the stratosphere. This could explain why archaeological records provide no evidence of increased human mortality following the Toba super-eruption. Further, we raise the unexplored possibility that the largest super-eruptions could cause global-scale warming.

     
    more » « less
  5. Abstract. The injection of sulfur into the stratosphere by volcanic eruptions is thedominant driver of natural climate variability oninterannual to multidecadal timescales. Based on a set of continuous sulfateand sulfur records from a suite of ice cores from Greenland and Antarctica,the HolVol v.1.0 database includes estimates of the magnitudes andapproximate source latitudes of major volcanic stratospheric sulfurinjection (VSSI) events for the Holocene (from 9500 BCE or 11 500 years BP to1900 CE), constituting an extension of the previous record by 7000 years.The database incorporates new-generation ice-core aerosol records with asub-annual temporal resolution and a demonstrated sub-decadal dating accuracyand precision. By tightly aligning and stacking the ice-core records on theWD2014 chronology from Antarctica, we resolve long-standing inconsistenciesin the dating of ancient volcanic eruptions that arise from biased (i.e.,dated too old) ice-core chronologies over the Holocene for Greenland. Wereconstruct a total of 850 volcanic eruptions with injections in excess of 1 teragram of sulfur (Tg S); of these eruptions, 329 (39 %) are located in the low latitudes with bipolarsulfate deposition, 426 (50 %) are located in the Northern Hemisphere extratropics (NHET) and 88 (10 %) are located in the Southern Hemisphere extratropics (SHET). The spatial distribution of the reconstructed eruption locationsis in agreement with prior reconstructions for the past 2500 years. Intotal, these eruptions injected 7410 Tg S into thestratosphere: 70 % from tropical eruptions and 25 % from NHextratropical eruptions. A long-term latitudinally and monthly resolvedstratospheric aerosol optical depth (SAOD) time series is reconstructed fromthe HolVol VSSI estimates, representing the first Holocene-scalereconstruction constrained by Greenland and Antarctica ice cores. These newlong-term reconstructions of past VSSI and SAOD variability confirm evidencefrom regional volcanic eruption chronologies (e.g., from Iceland) in showingthat the Early Holocene (9500–7000 BCE) experienced a higher number ofvolcanic eruptions (+16 %) and cumulative VSSI (+86 %) compared withthe past 2500 years. This increase coincides with the rapid retreat of icesheets during deglaciation, providing context for potential future increasesin volcanic activity in regions under projected glacier melting in the 21stcentury. The reconstructed VSSI and SAOD data are available at https://doi.org/10.1594/PANGAEA.928646 (Sigl et al., 2021). 
    more » « less