skip to main content


Title: No evidence for tephra in Greenland from the historic eruption of Vesuvius in 79 CE: implications for geochronology and paleoclimatology
Abstract. Volcanic fallout in polar ice sheets provides important opportunities to date and correlate ice-core records as well as to investigate theenvironmental impacts of eruptions. Only the geochemical characterization of volcanic ash (tephra) embedded in the ice strata can confirm the sourceof the eruption, however, and is a requisite if historical eruption ages are to be used as valid chronological checks on annual ice layercounting. Here we report the investigation of ash particles in a Greenland ice core that are associated with a volcanic sulfuric acid layer previouslyattributed to the 79 CE eruption of Vesuvius. Major and trace element composition of the particles indicates that the tephra does not derive fromVesuvius but most likely originates from an unidentified eruption in the Aleutian arc. Using ash dispersal modeling, we find that only an eruptionlarge enough to include stratospheric injection is likely to account for the sizable (24–85 µm) ash particles observed in the Greenlandice at this time. Despite its likely explosivity, this event does not appear to have triggered significant climate perturbations, unlike some otherlarge extratropical eruptions. In light of a recent re-evaluation of the Greenland ice-core chronologies, our findings further challenge the previousassignation of this volcanic event to 79 CE. We highlight the need for the revised Common Era ice-core chronology to be formally accepted by the widerice-core and climate modeling communities in order to ensure robust age linkages to precisely dated historical and paleoclimate proxy records.  more » « less
Award ID(s):
1925417
NSF-PAR ID:
10349903
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Climate of the Past
Volume:
18
Issue:
1
ISSN:
1814-9332
Page Range / eLocation ID:
45 to 65
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract. Volcanic eruptions are a key source of climatic variability, andreconstructing their past impact can improve our understanding of theoperation of the climate system and increase the accuracy of future climateprojections. Two annually resolved and independently dated palaeoarchives –tree rings and polar ice cores – can be used in tandem to assess thetiming, strength and climatic impact of volcanic eruptions over the past∼ 2500 years. The quantification of post-volcanic climateresponses, however, has at times been hampered by differences betweensimulated and observed temperature responses that raised questions regardingthe robustness of the chronologies of both archives. While manychronological mismatches have been resolved, the precise timing and climaticimpact of two major sulfate-emitting volcanic eruptions during the 1450s CE, including the largest atmospheric sulfate-loading event in the last 700 years, have not been constrained. Here we explore this issue through acombination of tephrochronological evidence and high-resolution ice-corechemistry measurements from a Greenland ice core, the TUNU2013 record. We identify tephra from the historically dated 1477 CE eruption of theIcelandic Veiðivötn–Bárðarbunga volcanic system in directassociation with a notable sulfate peak in TUNU2013 attributed to thisevent, confirming that this peak can be used as a reliable and precisetime marker. Using seasonal cycles in several chemical elements and 1477 CEas a fixed chronological point shows that ages of 1453 CE and 1458 CE can beattributed, with high precision, to the start of two other notablesulfate peaks. This confirms the accuracy of a recent Greenland ice-corechronology over the middle to late 15th century and corroborates thefindings of recent volcanic reconstructions from Greenland and Antarctica.Overall, this implies that large-scale Northern Hemisphere climatic coolingaffecting tree-ring growth in 1453 CE was caused by a Northern Hemispherevolcanic eruption in 1452 or early 1453 CE, and then a Southern Hemisphereeruption, previously assumed to have triggered the cooling, occurred laterin 1457 or 1458 CE. The direct attribution of the 1477 CE sulfate peak to the eruption ofVeiðivötn, one of the most explosive from Iceland in the last 1200 years, also provides the opportunity to assess the eruption's climaticimpact. A tree-ring-based reconstruction of Northern Hemisphere summertemperatures shows a cooling in the aftermath of the eruption of −0.35 ∘C relative to a 1961–1990 CE reference period and−0.1 ∘C relative to the 30-year period around the event, as well as arelatively weak and spatially incoherent climatic response in comparison tothe less explosive but longer-lasting Icelandic Eldgjá 939 CE and Laki1783 CE eruptions. In addition, the Veiðivötn 1477 CE eruptionoccurred around the inception of the Little Ice Age and could be used as achronostratigraphic marker to constrain the phasing and spatial variabilityof climate changes over this transition if it can be traced in moreregional palaeoclimatic archives. 
    more » « less
  2. Abstract

    Chemical anomalies in polar ice core records are frequently linked to volcanism; however, without the presence of (crypto)tephra particles, links to specific eruptions remain speculative. Correlating tephras yields estimates of eruption timing and potential source volcano, offers refinement of ice core chronologies, and provides insights into volcanic impacts. Here, we report on sparse rhyolitic glass shards detected in the Roosevelt Island Climate Evolution (RICE) ice core (West Antarctica), attributed to the 1.8 ka Taupō eruption (New Zealand)—one of the largest and most energetic Holocene eruptions globally. Six shards of a distinctive geochemical composition, identical within analytical uncertainties to proximal Taupō glass, are accompanied by a single shard indistinguishable from glass of the ~25.5 ka Ōruanui supereruption, also from Taupō volcano. This double fingerprint uniquely identifies the source volcano and helps link the shards to the climactic phase of the Taupō eruption. The englacial Taupō-derived glass shards coincide with a particle spike and conductivity anomaly at 278.84 m core depth, along with trachytic glass from a local Antarctic eruption of Mt. Melbourne. The assessed age of the sampled ice is 230 ± 19 CE (95% confidence), confirming that the published radiocarbon wiggle-match date of 232 ± 10 CE (2 SD) for the Taupō eruption is robust.

     
    more » « less
  3. Abstract

    A large volcanic sulfate increase observed in ice core records around 1450 C.E. has been attributed in previous studies to a volcanic eruption from the submarine Kuwae caldera in Vanuatu. Both EPMA–WDS (electron microprobe analysis using a wavelength dispersive spectrometer) and SEM–EDS (scanning electron microscopy analysis using an energy dispersive spectrometer) analyses of five microscopic volcanic ash (cryptotephra) particles extracted from the ice interval associated with a rise in sulfate ca. 1458 C.E. in the South Pole ice core (SPICEcore) indicate that the tephra deposits are chemically distinct from those erupted from the Kuwae caldera. Recognizing that the sulfate peak is not associated with the Kuwae volcano, and likely not a large stratospheric tropical eruption, requires revision of the stratospheric sulfate injection mass that is used for parameterization of paleoclimate models. Future work is needed to confirm that a volcanic eruption from Mt. Reclus is one of the possible sources of the 1458 C.E. sulfate anomaly in Antarctic ice cores.

     
    more » « less
  4. Abstract

    A comprehensive record (WHV2020) of explosive volcanic eruptions in the last 11,000 years is reconstructed from the West Antarctica Ice Sheet Divide deep ice core (WDC). The chronological list of 426 large volcanic eruptions in the Southern Hemisphere and the low latitudes during the Holocene are of the highest quality of all volcanic records from ice cores, owing to the high‐resolution chemical measurement of the ice core and the exceptionally accurate WDC timescale. No apparent trend is found in the frequency (number of eruptions per millennium) of volcanic eruptions, and the number of eruptions in the most recent millennium (1,000–2,000 CE) is only slightly higher than the average in the last 11 millennia. The atmospheric aerosol mass loading of climate‐impacting sulfur, estimated from measured volcanic sulfate deposition, is dominated by explosive eruptions with extraordinarily high sulfur mass loading. Signals of three major volcanic eruptions are detected in the second half of the 17th century (1700–1600) BCE when the Thera volcano in the eastern Mediterranean was suspected to have erupted; the fact that these signals are synchronous with three volcanic eruptions detected in Greenland ice cores suggests that these are likely eruptions in the low latitudes and none should be attributed exclusively to Thera. A number of eruptions with very high sulfur mass loading took place shortly before and during an early Holocene climatic episode, the so‐called 8.2 ka event, and are speculated to have contributed to the initiation and magnitude of the cold event.

     
    more » « less
  5. Abstract. The injection of sulfur into the stratosphere by volcanic eruptions is thedominant driver of natural climate variability oninterannual to multidecadal timescales. Based on a set of continuous sulfateand sulfur records from a suite of ice cores from Greenland and Antarctica,the HolVol v.1.0 database includes estimates of the magnitudes andapproximate source latitudes of major volcanic stratospheric sulfurinjection (VSSI) events for the Holocene (from 9500 BCE or 11 500 years BP to1900 CE), constituting an extension of the previous record by 7000 years.The database incorporates new-generation ice-core aerosol records with asub-annual temporal resolution and a demonstrated sub-decadal dating accuracyand precision. By tightly aligning and stacking the ice-core records on theWD2014 chronology from Antarctica, we resolve long-standing inconsistenciesin the dating of ancient volcanic eruptions that arise from biased (i.e.,dated too old) ice-core chronologies over the Holocene for Greenland. Wereconstruct a total of 850 volcanic eruptions with injections in excess of 1 teragram of sulfur (Tg S); of these eruptions, 329 (39 %) are located in the low latitudes with bipolarsulfate deposition, 426 (50 %) are located in the Northern Hemisphere extratropics (NHET) and 88 (10 %) are located in the Southern Hemisphere extratropics (SHET). The spatial distribution of the reconstructed eruption locationsis in agreement with prior reconstructions for the past 2500 years. Intotal, these eruptions injected 7410 Tg S into thestratosphere: 70 % from tropical eruptions and 25 % from NHextratropical eruptions. A long-term latitudinally and monthly resolvedstratospheric aerosol optical depth (SAOD) time series is reconstructed fromthe HolVol VSSI estimates, representing the first Holocene-scalereconstruction constrained by Greenland and Antarctica ice cores. These newlong-term reconstructions of past VSSI and SAOD variability confirm evidencefrom regional volcanic eruption chronologies (e.g., from Iceland) in showingthat the Early Holocene (9500–7000 BCE) experienced a higher number ofvolcanic eruptions (+16 %) and cumulative VSSI (+86 %) compared withthe past 2500 years. This increase coincides with the rapid retreat of icesheets during deglaciation, providing context for potential future increasesin volcanic activity in regions under projected glacier melting in the 21stcentury. The reconstructed VSSI and SAOD data are available at https://doi.org/10.1594/PANGAEA.928646 (Sigl et al., 2021). 
    more » « less