skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Plasmonic ommatidia for lensless compound-eye vision
Abstract The vision system of arthropods such as insects and crustaceans is based on the compound-eye architecture, consisting of a dense array of individual imaging elements (ommatidia) pointing along different directions. This arrangement is particularly attractive for imaging applications requiring extreme size miniaturization, wide-angle fields of view, and high sensitivity to motion. However, the implementation of cameras directly mimicking the eyes of common arthropods is complicated by their curved geometry. Here, we describe a lensless planar architecture, where each pixel of a standard image-sensor array is coated with an ensemble of metallic plasmonic nanostructures that only transmits light incident along a small geometrically-tunable distribution of angles. A set of near-infrared devices providing directional photodetection peaked at different angles is designed, fabricated, and tested. Computational imaging techniques are then employed to demonstrate the ability of these devices to reconstruct high-quality images of relatively complex objects.  more » « less
Award ID(s):
1711156
PAR ID:
10153879
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
11
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Arrays of neutral atoms trapped in optical tweezers have emerged as a leading platform for quantum information processing and quantum simulation due to their scalability, reconfigurable connectivity, and high-fidelity operations. Individual atoms are promising candidates for quantum networking due to their capability to emit indistinguishable photons that are entangled with their internal atomic states. Integrating atom arrays with photonic interfaces would enable distributed architectures in which nodes hosting many processing qubits could be efficiently linked together via the distribution of remote entanglement. However, many atom array techniques cease to work in close proximity to photonic interfaces, with atom detection via standard fluorescence imaging presenting a major challenge due to scattering from nearby photonic devices. Here, we demonstrate an architecture that combines atom arrays with up to 64 optical tweezers and a millimeter-scale photonic chip hosting more than 100 nanophotonic cavities. We achieve high-fidelity ( ~ 99.2%), background-free imaging in close proximity to nanofabricated cavities using a multichromatic excitation and detection scheme. The atoms can be imaged while trapped a few hundred nanometers above the dielectric surface, which we verify using Stark shift measurements of the modified trapping potential. Finally, we rearrange atoms into defect-free arrays and load them simultaneously onto the same or multiple devices. 
    more » « less
  2. Abstract Deoxyribonucleic acid (DNA) has emerged as a promising building block for next-generation ultra-high density storage devices. Although DNA has high durability and extremely high density in nature, its potential as the basis of storage devices is currently hindered by limitations such as expensive and complex fabrication processes and time-consuming read–write operations. In this article, we propose the use of a DNA crossbar array architecture for an electrically readable read-only memory (DNA-ROM). While information can be ‘written’ error-free to a DNA-ROM array using appropriate sequence encodings its read accuracy can be affected by several factors such as array size, interconnect resistance, and Fermi energy deviations from HOMO levels of DNA strands employed in the crossbar. We study the impact of array size and interconnect resistance on the bit error rate of a DNA-ROM array through extensive Monte Carlo simulations. We have also analyzed the performance of our proposed DNA crossbar array for an image storage application, as a function of array size and interconnect resistance. While we expect that future advances in bioengineering and materials science will address some of the fabrication challenges associated with DNA crossbar arrays, we believe that the comprehensive body of results we present in this paper establishes the technical viability of DNA crossbar arrays as low power, high-density storage devices. Finally, our analysis of array performance vis-à-vis interconnect resistance should provide valuable insights into aspects of the fabrication process such as proper choice of interconnects necessary for ensuring high read accuracies. 
    more » « less
  3. Abstract Acoustic phased arrays are capable of steering and focusing a beam of sound via selective coordination of the spatial distribution of phase angles between multiple sound emitters. Constrained by the principle of reciprocity, conventional phased arrays exhibit identical transmission and reception patterns which limit the scope of their operation. This work presents a controllable space–time acoustic phased array which breaks time-reversal symmetry, and enables phononic transition in both momentum and energy spaces. By leveraging a dynamic phase modulation, the proposed linear phased array is no longer bound by the acoustic reciprocity, and supports asymmetric transmission and reception patterns that can be tuned independently at multiple channels. A foundational framework is developed to characterize and interpret the emergent nonreciprocal phenomena and is later validated against benchmark numerical experiments. The new phased array selectively alters the directional and frequency content of the incident signal and imparts a frequency conversion between different wave fields, which is further analyzed as a function of the imposed modulation. The space–time acoustic phased array enables unprecedented control over sound waves in a variety of applications ranging from ultrasonic imaging to non-destructive testing and underwater SONAR telecommunication. 
    more » « less
  4. Abstract Alterations in vascular networks, including angiogenesis and capillary regression, play key roles in disease, wound healing, and development. The spatial structures of blood vessels can be captured through imaging, but effective characterization of network architecture requires both metrics for quantification and software to carry out the analysis in a high‐throughput and unbiased fashion. We present Rapid Editable Analysis of Vessel Elements Routine (REAVER), an open‐source tool that researchers can use to analyze high‐resolution 2D fluorescent images of blood vessel networks, and assess its performance compared to alternative image analysis programs. Using a dataset of manually analyzed images from a variety of murine tissues as a ground‐truth, REAVER exhibited high accuracy and precision for all vessel architecture metrics quantified, including vessel length density, vessel area fraction, mean vessel diameter, and branchpoint count, along with the highest pixel‐by‐pixel accuracy for the segmentation of the blood vessel network. In instances where REAVER's automated segmentation is inaccurate, we show that combining manual curation with automated analysis improves the accuracy of vessel architecture metrics. REAVER can be used to quantify differences in blood vessel architectures, making it useful in experiments designed to evaluate the effects of different external perturbations (eg, drugs or disease states). 
    more » « less
  5. We demonstrate temporally multiplexed multibeam ptychography implemented for the first time in the EUV, by using a high harmonic based light source. This allows for simultaneous imaging of different sample areas, or of the same area at different times or incidence angles. Furthermore, we show that this technique is compatible with wavelength multiplexing for multibeam spectroscopic imaging, taking full advantage of the temporal and spectral characteristics of high harmonic light sources. This technique enables increased data throughput using a simple experimental implementation and with high photon efficiency. 
    more » « less