Abstract The spatial variation of vector vortex beams with arbitrary polarization states and orbital angular momentum (OAM) values along the beam propagation is demonstrated by using plasmonic metasurfaces with the initial geometric phase profiles determined from the caustic theory. The vector vortex beam is produced by the superposition of deflected right- and left-handed circularly polarized component vortices with different helical phase charges, which are simultaneously generated off-axially by the single metasurface. Besides, the detailed evolution processes of intensity profile, polarization distribution and OAM value along the beam propagation distance is analyzed. The demonstrated arbitrary space-variant vector vortex beam will pave the way to many promising applications related to spin-to-orbital angular momentum conversion, spin-orbit hybrid entanglement, particle manipulation and transportation, and optical communication. 
                        more » 
                        « less   
                    
                            
                            Geometric deep optical sensing
                        
                    
    
            BACKGROUND Optical sensing devices measure the rich physical properties of an incident light beam, such as its power, polarization state, spectrum, and intensity distribution. Most conventional sensors, such as power meters, polarimeters, spectrometers, and cameras, are monofunctional and bulky. For example, classical Fourier-transform infrared spectrometers and polarimeters, which characterize the optical spectrum in the infrared and the polarization state of light, respectively, can occupy a considerable portion of an optical table. Over the past decade, the development of integrated sensing solutions by using miniaturized devices together with advanced machine-learning algorithms has accelerated rapidly, and optical sensing research has evolved into a highly interdisciplinary field that encompasses devices and materials engineering, condensed matter physics, and machine learning. To this end, future optical sensing technologies will benefit from innovations in device architecture, discoveries of new quantum materials, demonstrations of previously uncharacterized optical and optoelectronic phenomena, and rapid advances in the development of tailored machine-learning algorithms. ADVANCES Recently, a number of sensing and imaging demonstrations have emerged that differ substantially from conventional sensing schemes in the way that optical information is detected. A typical example is computational spectroscopy. In this new paradigm, a compact spectrometer first collectively captures the comprehensive spectral information of an incident light beam using multiple elements or a single element under different operational states and generates a high-dimensional photoresponse vector. An advanced algorithm then interprets the vector to achieve reconstruction of the spectrum. This scheme shifts the physical complexity of conventional grating- or interference-based spectrometers to computation. Moreover, many of the recent developments go well beyond optical spectroscopy, and we discuss them within a common framework, dubbed “geometric deep optical sensing.” The term “geometric” is intended to emphasize that in this sensing scheme, the physical properties of an unknown light beam and the corresponding photoresponses can be regarded as points in two respective high-dimensional vector spaces and that the sensing process can be considered to be a mapping from one vector space to the other. The mapping can be linear, nonlinear, or highly entangled; for the latter two cases, deep artificial neural networks represent a natural choice for the encoding and/or decoding processes, from which the term “deep” is derived. In addition to this classical geometric view, the quantum geometry of Bloch electrons in Hilbert space, such as Berry curvature and quantum metrics, is essential for the determination of the polarization-dependent photoresponses in some optical sensors. In this Review, we first present a general perspective of this sensing scheme from the viewpoint of information theory, in which the photoresponse measurement and the extraction of light properties are deemed as information-encoding and -decoding processes, respectively. We then discuss demonstrations in which a reconfigurable sensor (or an array thereof), enabled by device reconfigurability and the implementation of neural networks, can detect the power, polarization state, wavelength, and spatial features of an incident light beam. OUTLOOK As increasingly more computing resources become available, optical sensing is becoming more computational, with device reconfigurability playing a key role. On the one hand, advanced algorithms, including deep neural networks, will enable effective decoding of high-dimensional photoresponse vectors, which reduces the physical complexity of sensors. Therefore, it will be important to integrate memory cells near or within sensors to enable efficient processing and interpretation of a large amount of photoresponse data. On the other hand, analog computation based on neural networks can be performed with an array of reconfigurable devices, which enables direct multiplexing of sensing and computing functions. We anticipate that these two directions will become the engineering frontier of future deep sensing research. On the scientific frontier, exploring quantum geometric and topological properties of new quantum materials in both linear and nonlinear light-matter interactions will enrich the information-encoding pathways for deep optical sensing. In addition, deep sensing schemes will continue to benefit from the latest developments in machine learning. Future highly compact, multifunctional, reconfigurable, and intelligent sensors and imagers will find applications in medical imaging, environmental monitoring, infrared astronomy, and many other areas of our daily lives, especially in the mobile domain and the internet of things. Schematic of deep optical sensing. The n -dimensional unknown information ( w ) is encoded into an m -dimensional photoresponse vector ( x ) by a reconfigurable sensor (or an array thereof), from which w′ is reconstructed by a trained neural network ( n ′ = n and w′   ≈   w ). Alternatively, x may be directly deciphered to capture certain properties of w . Here, w , x , and w′ can be regarded as points in their respective high-dimensional vector spaces ℛ n , ℛ m , and ℛ n ′ . 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10412732
- Date Published:
- Journal Name:
- Science
- Volume:
- 379
- Issue:
- 6637
- ISSN:
- 0036-8075
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The direct interfacing of photonic crystal fiber to a metallic nanoantenna has widespread application in nanoscale imaging, optical lithography, nanoscale lasers, quantum communication,in vivosensing, and medical surgery. We report on the fabrication of a needle-shaped plasmonic nanoantenna on the end facet of a photonic crystal fiber using electron-beam-induced evaporation of platinum. We demonstrate the coupling of light from the fiber waveguide mode to the subwavelength nanoantenna plasmonic mode focusing down to the apex of the plasmonic needle using a polarization-resolved far-field side-scatter imaging technique. Our work provides an important step toward widespread application of optical fibers in nearfield spectroscopic techniques such as tip-enhanced Raman and fluorescence microscopy, single-photon excitation and quantum sensors, nanoscale optical lithography, and lab-on-fiber devices.more » « less
- 
            Abstract Nonlinear light–matter interaction, as the core of ultrafast optics, bulk photovoltaics, nonlinear optical sensing and imaging, and efficient generation of entangled photons, has been traditionally studied by first-principles theoretical methods with the sum-over-states approach. However, this indirect method often suffers from the divergence at band degeneracy and optical zeros as well as convergence issues and high computation costs when summing over the states. Here, using shift vector and shift current conductivity tensor as an example, we present a gauge-invariant generalized approach for efficient and direct calculations of nonlinear optical responses by representing interband Berry curvature, quantum metric, and shift vector in a generalized Wilson loop. This generalized Wilson loop method avoids the above cumbersome challenges and allows for easy implementation and efficient calculations. More importantly, the Wilson loop representation provides a succinct geometric interpretation of nonlinear optical processes and responses based on quantum geometric tensors and quantum geometric potentials and can be readily applied to studying other excited-state responses.more » « less
- 
            Surface plasmon polaritons (SPPs) are traditionally excited by plane waves within the Rayleigh range of a focused transverse-magnetic (TM) Gaussian beam. Here we investigate and confirm the coupling between SPPs and two-dimensional Gaussian and Bessel–Gauss wave packets, as well as one-dimensional light sheets and space-time wave packets. We encode the incoming wavefronts with spatially varying states of polarization; then we couple the respective TM components of radial and azimuthal vector beam profiles to confirm polarization-correlation and spatial-mode selectivity. Our results do not require material optimization or multi-dimensional confinement via periodically corrugated metal surfaces to achieve coupling at a greater extent, hereby outlining a pivotal, yet commonly overlooked, path towards the development of long-range biosensors and all-optical integrated plasmonic circuits.more » « less
- 
            Abstract Metasurfaces composed of in‐plane subwavelength nanostructures have unprecedented capability in manipulating the amplitude, phase, and polarization states of light. Here, a unique type of direction‐controlled bifunctional metasurface polarizer is proposed and experimentally demonstrated based on plasmonic stepped slit‐groove dimers. In the forward direction, a chiral linear polarizer is enabled which only allows the transmission of a certain incident handedness and converts it into the specified linear polarization. In the backward direction, the metasurface functions as an anisotropic circular polarizer to selectively convert a certain linear polarization component into the desired circularly polarized transmission. The observed direction‐controlled polarization selection and conversion are explained by the spin‐dependent mode coupling process inside the bilayer structure. Anisotropic chiral imaging based on the proposed metasurface polarizer is further demonstrated. The results provide new degrees of freedom to realize future multifunctional photonic integrated devices for structured light conversion, vector beam generation, optical imaging and sensing, and optical communication.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    