skip to main content


Title: Spiking neurons from tunable Gaussian heterojunction transistors
Abstract

Spiking neural networks exploit spatiotemporal processing, spiking sparsity, and high interneuron bandwidth to maximize the energy efficiency of neuromorphic computing. While conventional silicon-based technology can be used in this context, the resulting neuron-synapse circuits require multiple transistors and complicated layouts that limit integration density. Here, we demonstrate unprecedented electrostatic control of dual-gated Gaussian heterojunction transistors for simplified spiking neuron implementation. These devices employ wafer-scale mixed-dimensional van der Waals heterojunctions consisting of chemical vapor deposited monolayer molybdenum disulfide and solution-processed semiconducting single-walled carbon nanotubes to emulate the spike-generating ion channels in biological neurons. Circuits based on these dual-gated Gaussian devices enable a variety of biological spiking responses including phasic spiking, delayed spiking, and tonic bursting. In addition to neuromorphic computing, the tunable Gaussian response has significant implications for a range of other applications including telecommunications, computer vision, and natural language processing.

 
more » « less
NSF-PAR ID:
10153880
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
11
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Due to the increasing importance of artificial intelligence (AI), significant recent effort has been devoted to the development of neuromorphic circuits that seek to emulate the energy‐efficient information processing of the brain. While non‐volatile memory (NVM) based on resistive switches, phase‐change memory, and magnetic tunnel junctions has shown potential for implementing neural networks, additional multi‐terminal device concepts are required for more sophisticated bio‐realistic functions. Of particular interest are memtransistors based on low‐dimensional nanomaterials, which are capable of electrostatically tuning memory and learning behavior at the device level. Herein, a conceptual overview of the memtransistor is provided in the context of neuromorphic circuits. Recent progress is surveyed for memtransistors and related multi‐terminal NVM devices including dual‐gated floating‐gate memories, dual‐gated ferroelectric transistors, and dual‐gated van der Waals heterojunctions. The different materials systems and device architectures are classified based on the degree of control and relative tunability of synaptic behavior, with an emphasis on device concepts that harness the reduced dimensionality, weak electrostatic screening, and phase‐changes properties of nanomaterials. Finally, strategies for achieving wafer‐scale integration of memtransistors and multi‐terminal NVM devices are delineated, with specific attention given to the materials challenges for practical neuromorphic circuits.

     
    more » « less
  2. Neuromorphic computing systems execute machine learning tasks designed with spiking neural networks. These systems are embracing non-volatile memory to implement high-density and low-energy synaptic storage. Elevated voltages and currents needed to operate non-volatile memories cause aging of CMOS-based transistors in each neuron and synapse circuit in the hardware, drifting the transistor’s parameters from their nominal values. If these circuits are used continuously for too long, the parameter drifts cannot be reversed, resulting in permanent degradation of circuit performance over time, eventually leading to hardware faults. Aggressive device scaling increases power density and temperature, which further accelerates the aging, challenging the reliable operation of neuromorphic systems. Existing reliability-oriented techniques periodically de-stress all neuron and synapse circuits in the hardware at fixed intervals, assuming worst-case operating conditions, without actually tracking their aging at run-time. To de-stress these circuits, normal operation must be interrupted, which introduces latency in spike generation and propagation, impacting the inter-spike interval and hence, performance (e.g., accuracy). We observe that in contrast to long-term aging, which permanently damages the hardware, short-term aging in scaled CMOS transistors is mostly due to bias temperature instability. The latter is heavily workload-dependent and, more importantly, partially reversible. We propose a new architectural technique to mitigate the aging-related reliability problems in neuromorphic systems by designing an intelligent run-time manager (NCRTM), which dynamically de-stresses neuron and synapse circuits in response to the short-term aging in their CMOS transistors during the execution of machine learning workloads, with the objective of meeting a reliability target. NCRTM de-stresses these circuits only when it is absolutely necessary to do so, otherwise reducing the performance impact by scheduling de-stress operations off the critical path. We evaluate NCRTM with state-of-the-art machine learning workloads on a neuromorphic hardware. Our results demonstrate that NCRTM significantly improves the reliability of neuromorphic hardware, with marginal impact on performance. 
    more » « less
  3. This work reports a spiking neuromorphic architecture for associative memory simulated in a SPICE environment using recently reported gated-RRAM (resistive random-access memory) devices as synapses alongside neurons based on complementary metal-oxide semiconductors (CMOSs). The network utilizes a Verilog A model to capture the behavior of the gated-RRAM devices within the architecture. The model uses parameters obtained from experimental gated-RRAM devices that were fabricated and tested in this work. Using these devices in tandem with CMOS neuron circuitry, our results indicate that the proposed architecture can learn an association in real time and retrieve the learned association when incomplete information is provided. These results show the promise for gated-RRAM devices for associative memory tasks within a spiking neuromorphic architecture framework. 
    more » « less
  4. The spatiotemporal nature of neuronal behavior in spiking neural networks (SNNs) makes SNNs promising for edge applications that require high energy efficiency. To realize SNNs in hardware, spintronic neuron implementations can bring advantages of scalability and energy efficiency. Domain wall (DW)-based magnetic tunnel junction (MTJ) devices are well suited for probabilistic neural networks given their intrinsic integrate-and-fire behavior with tunable stochasticity. Here, we present a scaled DW-MTJ neuron with voltage-dependent firing probability. The measured behavior was used to simulate a SNN that attains accuracy during learning compared to an equivalent, but more complicated, multi-weight DW-MTJ device. The validation accuracy during training was also shown to be comparable to an ideal leaky integrate and fire device. However, during inference, the binary DW-MTJ neuron outperformed the other devices after Gaussian noise was introduced to the Fashion-MNIST classification task. This work shows that DW-MTJ devices can be used to construct noise-resilient networks suitable for neuromorphic computing on the edge. 
    more » « less
  5. Abstract

    Memristive systems offer biomimetic functions that are being actively explored for energy‐efficient neuromorphic circuits. In addition to providing ultimate geometric scaling limits, 2D semiconductors enable unique gate‐tunable responses including the recent realization of hybrid memristor and transistor devices known as memtransistors. In particular, monolayer MoS2memtransistors exhibit nonvolatile memristive switching where the resistance of each state is modulated by a gate terminal. Here, further control over the memtransistor neuromorphic response through the introduction of a second gate terminal is gained. The resulting dual‐gated memtransistors allow tunability over the learning rate for non‐Hebbian training where the long‐term potentiation and depression synaptic behavior is dictated by gate biases during the reading and writing processes. Furthermore, the electrostatic control provided by dual gates provides a compact solution to the sneak current problem in traditional memristor crossbar arrays. In this manner, dual gating facilitates the full utilization and integration of memtransistor functionality in highly scaled crossbar circuits. Furthermore, the tunability of long‐term potentiation yields improved linearity and symmetry of weight update rules that are utilized in simulated artificial neural networks to achieve a 94% recognition rate of hand‐written digits.

     
    more » « less