skip to main content


This content will become publicly available on June 26, 2024

Title: Stochastic domain wall-magnetic tunnel junction artificial neurons for noise-resilient spiking neural networks
The spatiotemporal nature of neuronal behavior in spiking neural networks (SNNs) makes SNNs promising for edge applications that require high energy efficiency. To realize SNNs in hardware, spintronic neuron implementations can bring advantages of scalability and energy efficiency. Domain wall (DW)-based magnetic tunnel junction (MTJ) devices are well suited for probabilistic neural networks given their intrinsic integrate-and-fire behavior with tunable stochasticity. Here, we present a scaled DW-MTJ neuron with voltage-dependent firing probability. The measured behavior was used to simulate a SNN that attains accuracy during learning compared to an equivalent, but more complicated, multi-weight DW-MTJ device. The validation accuracy during training was also shown to be comparable to an ideal leaky integrate and fire device. However, during inference, the binary DW-MTJ neuron outperformed the other devices after Gaussian noise was introduced to the Fashion-MNIST classification task. This work shows that DW-MTJ devices can be used to construct noise-resilient networks suitable for neuromorphic computing on the edge.  more » « less
Award ID(s):
1910997
NSF-PAR ID:
10465746
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Applied Physics Letters
Volume:
122
Issue:
26
ISSN:
0003-6951
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Brain-inspired cognitive computing has so far followed two major approaches - one uses multi-layered artificial neural networks (ANNs) to perform pattern-recognition-related tasks, whereas the other uses spiking neural networks (SNNs) to emulate biological neurons in an attempt to be as efficient and fault-tolerant as the brain. While there has been considerable progress in the former area due to a combination of effective training algorithms and acceleration platforms, the latter is still in its infancy due to the lack of both. SNNs have a distinct advantage over their ANN counterparts in that they are capable of operating in an event-driven manner, thus consuming very low power. Several recent efforts have proposed various SNN hardware design alternatives, however, these designs still incur considerable energy overheads.In this context, this paper proposes a comprehensive design spanning across the device, circuit, architecture and algorithm levels to build an ultra low-power architecture for SNN and ANN inference. For this, we use spintronics-based magnetic tunnel junction (MTJ) devices that have been shown to function as both neuro-synaptic crossbars as well as thresholding neurons and can operate at ultra low voltage and current levels. Using this MTJ-based neuron model and synaptic connections, we design a low power chip that has the flexibility to be deployed for inference of SNNs, ANNs as well as a combination of SNN-ANN hybrid networks - a distinct advantage compared to prior works. We demonstrate the competitive performance and energy efficiency of the SNNs as well as hybrid models on a suite of workloads. Our evaluations show that the proposed design, NEBULA, is up to 7.9× more energy efficient than a state-of-the-art design, ISAAC, in the ANN mode. In the SNN mode, our design is about 45× more energy-efficient than a contemporary SNN architecture, INXS. Power comparison between NEBULA ANN and SNN modes indicates that the latter is at least 6.25× more power-efficient for the observed benchmarks. 
    more » « less
  2. The challenge of developing an efficient artificial neuron is impeded by the use of external CMOS circuits to perform leaking and lateral inhibition. The proposed leaky integrate-and-fire neuron based on the three terminal magnetic tunnel junction (3T-MTJ) performs integration by pushing its domain wall (DW) with spin-transfer or spin-orbit torque. The leaking capability is achieved by pushing the neurons’ DWs in the direction opposite of integration using a stray field from a hard ferromagnet or a non-uniform energy landscape resulting from shape or anisotropy variation. Firing is performed by the MTJ stack. Finally, analog lateral inhibition is achieved by dipolar field repulsive coupling from each neuron. An integrating neuron thus pushes slower neighboring neurons’ DWs in the direction opposite of integration. Applying this lateral inhibition to a ten-neuron output layer within a neuromorphic crossbar structure enables the identification of handwritten digits with 94% accuracy. 
    more » « less
  3. We present a new back propagation based training algorithm for discrete-time spiking neural networks (SNN). Inspired by recent deep learning algorithms on binarized neural networks, binary activation with a straight-through gradient estimator is used to model the leaky integrate-fire spiking neuron, overcoming the difficulty in training SNNs using back propagation. Two SNN training algorithms are proposed: (1) SNN with discontinuous integration, which is suitable for rate-coded input spikes, and (2) SNN with continuous integration, which is more general and can handle input spikes with temporal information. Neuromorphic hardware designed in 28nm CMOS exploits the spike sparsity and demonstrates high classification accuracy (>98% on MNIST) and low energy (51.4–773 nJ/image). 
    more » « less
  4. Driven by the expanse of Internet of Things (IoT) and Cyber-Physical Systems (CPS), there is an increasing demand to process streams of temporal data on embedded devices with limited energy and power resources. Among all potential solutions, neuromorphic computing with spiking neural networks (SNN) that mimic the behavior of brain, have recently been placed at the forefront. Encoding information into sparse and distributed spike events enables low-power implementations, and the complex spatial temporal dynamics of synapses and neurons enable SNNs to detect temporal pattern. However, most existing hardware SNN implementations use simplified neuron and synapse models ignoring synapse dynamic, which is critical for temporal pattern detection and other applications that require temporal dynamics. To adopt a more realistic synapse model in neuromorphic platform its significant computation overhead must be addressed. In this work, we propose an FPGA-based SNN with biologically realistic neuron and synapse for temporal information processing. An encoding scheme to convert continuous real-valued information into sparse spike events is presented. The event-driven implementation of synapse dynamic model and its hardware design that is optimized to exploit the sparsity are also presented. Finally, we train the SNN on various temporal pattern-learning tasks and evaluate its performance and efficiency as compared to rate-based models and artificial neural networks on different embedded platforms. Experiments show that our work can achieve 10X speed up and 196X gains in energy efficiency compared with GPU. 
    more » « less
  5. Abstract

    In neuromorphic computing, artificial synapses provide a multi‐weight (MW) conductance state that is set based on inputs from neurons, analogous to the brain. Herein, artificial synapses based on magnetic materials that use a magnetic tunnel junction (MTJ) and a magnetic domain wall (DW) are explored. By fabricating lithographic notches in a DW track underneath a single MTJ, 3–5 stable resistance states that can be repeatably controlled electrically using spin‐orbit torque are achieved. The effect of geometry on the synapse behavior is explored, showing that a trapezoidal device has asymmetric weight updates with high controllability, while a rectangular device has higher stochasticity, but with stable resistance levels. The device data is input into neuromorphic computing simulators to show the usefulness of application‐specific synaptic functions. Implementing an artificial neural network (NN) applied to streamed Fashion‐MNIST data, the trapezoidal magnetic synapse can be used as a metaplastic function for efficient online learning. Implementing a convolutional NN for CIFAR‐100 image recognition, the rectangular magnetic synapse achieves near‐ideal inference accuracy, due to the stability of its resistance levels. This work shows MW magnetic synapses are a feasible technology for neuromorphic computing and provides design guidelines for emerging artificial synapse technologies.

     
    more » « less