skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: New frontiers for the materials genome initiative
Abstract The Materials Genome Initiative (MGI) advanced a new paradigm for materials discovery and design, namely that the pace of new materials deployment could be accelerated through complementary efforts in theory, computation, and experiment. Along with numerous successes, new challenges are inviting researchers to refocus the efforts and approaches that were originally inspired by the MGI. In May 2017, the National Science Foundation sponsored the workshop “Advancing and Accelerating Materials Innovation Through the Synergistic Interaction among Computation, Experiment, and Theory: Opening New Frontiers” to review accomplishments that emerged from investments in science and infrastructure under the MGI, identify scientific opportunities in this new environment, examine how to effectively utilize new materials innovation infrastructure, and discuss challenges in achieving accelerated materials research through the seamless integration of experiment, computation, and theory. This article summarizes key findings from the workshop and provides perspectives that aim to guide the direction of future materials research and its translation into societal impacts.  more » « less
Award ID(s):
1729594 1729338
PAR ID:
10153906
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; « less
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Computational Materials
Volume:
5
Issue:
1
ISSN:
2057-3960
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The Materials Genome Initiative (MGI) calls for the acceleration of the materials development cycle through the integration of experiments and simulations within a data-aware/enabling framework. To realize this vision, MGI recognizes the need for the creation of a new kind of workforce capable of creating and/or deploying advanced informatics tools and methods into the materials discovery/development cycle. An interdisciplinary team at Texas A&M seeks to address this challenge by creating an interdisciplinary program that goes beyond MGI in that it incorporates the discipline of engineering systems design as an essential component of the new accelerated materials development paradigm. The Data-Enabled Discovery and Development of Energy Materials (D 3 EM) program seeks to create an interdisciplinary graduate program at the intersection of materials science, informatics, and design. In this paper, we describe the rationale for the creation of such a program, present the pedagogical model that forms the basis of the program, and describe some of the major elements of the program. 
    more » « less
  2. This article examines the landscape of Science, Technology, and Innovation policies in Central America, focusing on Nicaragua, Guatemala, Honduras, and El Salvador. These nations face significant challenges in leveraging STI for sustainable development, including financial constraints and limited resources. Additionally, Central America struggles with systemic issues such as corruption, violence, and high levels of emigration, further complicating efforts to advance STI. A workshop organized by Georgetown University's Science Technology and International Affairs program brought together scholars to discuss STI policies, resulting in key recommendations. The article highlights critical challenges, including over-reliance on state funding, stagnant researcher numbers, and the pressing need for research diversification. It emphasizes the importance of youth engagement, leadership, and resilience in shaping effective STI policies. Recommendations include investing in science education, establishing governmental scientific advisory bodies, promoting research diversity, and addressing climate change through STI strategies. The findings provide valuable insights for scholars, policymakers, and international organizations working with less developed nations globally. 
    more » « less
  3. Abstract Data‐driven science and technology have helped achieve meaningful technological advancements in areas such as materials/drug discovery and health care, but efforts to apply high‐end data science algorithms to the areas of glass and ceramics are still limited. Many glass and ceramic researchers are interested in enhancing their work by using more data and data analytics to develop better functional materials more efficiently. Simultaneously, the data science community is looking for a way to access materials data resources to test and validate their advanced computational learning algorithms. To address this issue, The American Ceramic Society (ACerS) convened a Glass and Ceramic Data Science Workshop in February 2018, sponsored by the National Institute for Standards and Technology (NIST) Advanced Manufacturing Technologies (AMTech) program. The workshop brought together a select group of leaders in the data science, informatics, and glass and ceramics communities, ACerS, and Nexight Group to identify the greatest opportunities and mechanisms for facilitating increased collaboration and coordination between these communities. This article summarizes workshop discussions about the current challenges that limit interactions and collaboration between the glass and ceramic and data science communities, opportunities for a coordinated approach that leverages existing knowledge in both communities, and a clear path toward the enhanced use of data science technologies for functional glass and ceramic research and development. 
    more » « less
  4. Abstract Modeling and simulation is transforming modern materials science, becoming an important tool for the discovery of new materials and material phenomena, for gaining insight into the processes that govern materials behavior, and, increasingly, for quantitative predictions that can be used as part of a design tool in full partnership with experimental synthesis and characterization. Modeling and simulation is the essential bridge from good science to good engineering, spanning from fundamental understanding of materials behavior to deliberate design of new materials technologies leveraging new properties and processes. This Roadmap presents a broad overview of the extensive impact computational modeling has had in materials science in the past few decades, and offers focused perspectives on where the path forward lies as this rapidly expanding field evolves to meet the challenges of the next few decades. The Roadmap offers perspectives on advances within disciplines as diverse as phase field methods to model mesoscale behavior and molecular dynamics methods to deduce the fundamental atomic-scale dynamical processes governing materials response, to the challenges involved in the interdisciplinary research that tackles complex materials problems where the governing phenomena span different scales of materials behavior requiring multiscale approaches. The shift from understanding fundamental materials behavior to development of quantitative approaches to explain and predict experimental observations requires advances in the methods and practice in simulations for reproducibility and reliability, and interacting with a computational ecosystem that integrates new theory development, innovative applications, and an increasingly integrated software and computational infrastructure that takes advantage of the increasingly powerful computational methods and computing hardware. 
    more » « less
  5. Modern science depends on computers, but not all scientists have access to the scale of computation they need. A digital divide separates scientists who accelerate their science using large cyberinfrastructure from those who do not, or who do not have access to the compute resources or learning opportunities to develop the skills needed. The exclusionary nature of the digital divide threatens equity and the future of innovation by leaving people out of the scientific process while over-amplifying the voices of a small group who have resources. However, there are potential solutions: recent advancements in public research cyberinfrastructure and resources developed during the open science revolution are providing tools that can help bridge this divide. These tools can enable access to fast and powerful computation with modest internet connections and personal computers. Here we contribute another resource for narrowing the digital divide: scalable virtual machines running on public cloud infrastructure. We describe the tools, infrastructure, and methods that enabled successful deployment of a reproducible and scalable cyberinfrastructure architecture for a collaborative data synthesis working group in February 2023. This platform enabled 45 scientists with varying data and compute skills to leverage 40,000 hours of compute time over a 4-day workshop. Our approach provides an open framework that can be replicated for educational and collaborative data synthesis experiences in any data- and compute-intensive discipline. 
    more » « less