skip to main content


Title: Data-Enabled Discovery and Design of Energy Materials (D3EM): Structure of An Interdisciplinary Materials Design Graduate Program
ABSTRACT The Materials Genome Initiative (MGI) calls for the acceleration of the materials development cycle through the integration of experiments and simulations within a data-aware/enabling framework. To realize this vision, MGI recognizes the need for the creation of a new kind of workforce capable of creating and/or deploying advanced informatics tools and methods into the materials discovery/development cycle. An interdisciplinary team at Texas A&M seeks to address this challenge by creating an interdisciplinary program that goes beyond MGI in that it incorporates the discipline of engineering systems design as an essential component of the new accelerated materials development paradigm. The Data-Enabled Discovery and Development of Energy Materials (D 3 EM) program seeks to create an interdisciplinary graduate program at the intersection of materials science, informatics, and design. In this paper, we describe the rationale for the creation of such a program, present the pedagogical model that forms the basis of the program, and describe some of the major elements of the program.  more » « less
Award ID(s):
1663296
NSF-PAR ID:
10028117
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
MRS Advances
Volume:
2
Issue:
31-32
ISSN:
2059-8521
Page Range / eLocation ID:
1693 to 1698
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The Joint Automated Repository for Various Integrated Simulations (JARVIS) is an integrated infrastructure to accelerate materials discovery and design using density functional theory (DFT), classical force-fields (FF), and machine learning (ML) techniques. JARVIS is motivated by the Materials Genome Initiative (MGI) principles of developing open-access databases and tools to reduce the cost and development time of materials discovery, optimization, and deployment. The major features of JARVIS are: JARVIS-DFT, JARVIS-FF, JARVIS-ML, and JARVIS-tools. To date, JARVIS consists of ≈40,000 materials and ≈1 million calculated properties in JARVIS-DFT, ≈500 materials and ≈110 force-fields in JARVIS-FF, and ≈25 ML models for material-property predictions in JARVIS-ML, all of which are continuously expanding. JARVIS-tools provides scripts and workflows for running and analyzing various simulations. We compare our computational data to experiments or high-fidelity computational methods wherever applicable to evaluate error/uncertainty in predictions. In addition to the existing workflows, the infrastructure can support a wide variety of other technologically important applications as part of the data-driven materials design paradigm. The JARVIS datasets and tools are publicly available at the website: https://jarvis.nist.gov . 
    more » « less
  2. There is increasing awareness of the imperative to accelerate materials discovery, design, development, and deployment. Materials design is essentially a goal-oriented activity that views the material as a complex system of interacting subsystems with models and experiments at multiple scales of materials structure hierarchy. The goal of materials design is effectively to invert quantitative relationships between process path, structure, and materials properties or responses to identify feasible materials. We first briefly discuss challenges in framing process-structure-property relationships for materials and the critical role of quantifying uncertainty and tracking its propagation through analysis and design. A case study exploiting inductive design of ultrahigh-performance concrete is briefly presented. We focus on important recent directions and key scientific challenges regarding the highly collaborative intersections of materials design with systems engineering, uncertainty quantification and management, optimization, and materials data science and informatics, which are essential to fueling continued progress in systems-based materials design. 
    more » « less
  3. Abstract

    The availability and easy access of large-scale experimental and computational materials data have enabled the emergence of accelerated development of algorithms and models for materials property prediction, structure prediction, and generative design of materials. However, the lack of user-friendly materials informatics web servers has severely constrained the wide adoption of such tools in the daily practice of materials screening, tinkering, and design space exploration by materials scientists. Herein we first survey current materials informatics web apps and then propose and develop MaterialsAtlas.org, a web-based materials informatics toolbox for materials discovery, which includes a variety of routinely needed tools for exploratory materials discovery, including material’s composition and structure validity check (e.g. charge neutrality, electronegativity balance, dynamic stability, Pauling rules), materials property prediction (e.g. band gap, elastic moduli, hardness, and thermal conductivity), search for hypothetical materials, and utility tools. These user-friendly tools can be freely accessed athttp://www.materialsatlas.org. We argue that such materials informatics apps should be widely developed by the community to speed up materials discovery processes.

     
    more » « less
  4. Researchers across nearly every discipline seek to leverage ontologies for knowledge discovery and computational tasks; yet, the number of machine readable materials science ontologies is limited. The work presented in this paper explores the Processing, Structure, Properties and Performance (PSPP) framework for accelerating the development of materials science ontologies. We pursue a case study framed by the creation of an Aerogel ontology and a Battery Cathode ontology and demonstrate the Helping Interdisciplinary Vocabulary Engineer for Materials Science (HIVE4MAT) as a proof of concept showing PSPP relationships. The paper includes background context covering materials science, the PSPP framework, and faceted analysis for ontologies. We report our research objectives, methods, research procedures, and results. The findings indicate that the PSPP framework offers a rubric that may help guide and potentially accelerate ontology development. 
    more » « less
  5. Researchers across nearly every discipline seek to leverage ontologies for knowledge discovery and computational tasks; yet, the number of machine readable materials science ontologies is limited. The work presented in this paper explores the Processing, Structure, Properties and Performance (PSPP) framework for accelerating the development of materials science ontologies. We pursue a case study framed by the creation of an Aerogel ontology and a Battery Cathode ontology and demonstrate the Helping Interdisciplinary Vocabulary Engineer for Materials Science (HIVE4MAT) as a proof of concept showing PSPP relationships. The paper includes background context covering materials science, the PSPP framework, and faceted analysis for ontologies. We report our research objectives, methods, research procedures, and results. The findings indicate that the PSPP framework offers a rubric that may help guide and potentially accelerate ontology development. 
    more » « less