The need for efficient energy utilization is driving research into ways to harvest ubiquitous waste heat. Here, we explore pyroelectric energy conversion from low-grade thermal sources that exploits strong field- and temperature-induced polarization susceptibilities in the relaxor ferroelectric 0.68Pb(Mg1/3Nb2/3)O3–0.32PbTiO3. Electric-field-driven enhancement of the pyroelectric response (as large as − 550 μC m−2 K−1) and suppression of the dielectric response (by 72%) yield substantial figures of merit for pyroelectric energy conversion. Field- and temperature-dependent pyroelectric measurements highlight the role of polarization rotation and field-induced polarization in mediating these effects. Solid-state, thin-film devices that convert lowgrade heat into electrical energy are demonstrated using pyroelectric Ericsson cycles, and optimized to yield maximum energy density, power density and efficiency of 1.06 J cm−3, 526 W cm−3 and 19% of Carnot, respectively; the highest values reported to date and equivalent to the performance of a thermoelectric with an effective ZT ≈ 1.16 for a temperature change of 10 K. Our findings suggest that pyroelectric devices may be competitive with thermoelectric devices for low-grade thermal harvesting.
more »
« less
New approach to waste-heat energy harvesting: pyroelectric energy conversion
Abstract Harvesting waste heat for useful purposes is an essential component of improving the efficiency of primary energy utilization. Today, approaches such as pyroelectric energy conversion are receiving renewed interest for their ability to turn wasted energy back into useful energy. From this perspective, the need for these approaches, the basic mechanisms and processes underlying their operation, and the material and device requirements behind pyroelectric energy conversion are reviewed, and the potential for advances in this area is also discussed.
more »
« less
- Award ID(s):
- 1708615
- PAR ID:
- 10153919
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- NPG Asia Materials
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 1884-4049
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
There is growing interest in the study of thin-film pyroelectric materials because of their potential for high performance thermal-energy conversion, thermal sensing, and beyond. Electrothermal susceptibilities, such as pyroelectricity, are known to be enhanced in proximity to polar instabilities, and this is conventionally accomplished by positioning the material close to a temperature-driven ferroelectric-to-paraelectric phase transition. The high Curie temperature (TC) for many ferroelectrics, however, limits the utility of these materials at room-temperature. Here, the nature of pyroelectric response in thin films of the widely studied multiferroic Bi1−xLaxFeO3 (x = 0–0.45) is probed. While BiFeO3 itself has a high TC, lanthanum substitution results in a chemically induced lowering of the ferroelectric-to-paraelectric and structural-phase transition. The effect of isovalent lanthanum substitution on the structural, dielectric, ferroelectric, and pyroelectric response is investigated using reciprocal-space-mapping studies; field-, frequency-, and temperature-dependent electrical measurements; and phase-sensitive pyroelectric measurements, respectively. While BiFeO3 itself has a rather small pyroelectric coefficient at room temperature (∼−40 µC/m2 K), 15% lanthanum substitution results in an enhancement of the pyroelectric coefficient by 100% which is found to arise from a systematic lowering of TC.more » « less
-
Abstract Pyroelectric detectors are often broadband and require external filters for wavelength‐specific applications. This paper reports a tunable, narrowband, and lightweight pyroelectric infrared detector built upon a flexible membrane of As2S3−Ag−P(VDF‐TrFE) with subwavelength grating, which is capable of both on‐chip filtering and photopyroelectric energy conversion. The top surface of this hybrid membrane is a corrugated As2S3−Ag film contributing to narrowband light absorption in the near‐infrared (NIR) regime, and the bottom part is a polyvinylidene fluoride‐trifluoroethylene (PVDF‐TrFE) membrane for the conversion of the absorbed light to an electrical signal. Uniquely, applying a bias voltage to the PVDF‐TrFE membrane enables the tuning of the device's absorption and pyroelectric characteristics owing to the piezoelectrically induced mechanical bending. The resonator exhibited a resonant absorption coefficient of 80% and a full‐width‐half‐maximum of 15 nm within the NIR, a responsivity of 1.4 mV mW−1, and an equivalent noise power of 13 µW Hz−1/2at 1560 nm. By applying a 15‐V bias to the PVDF‐TrFE membrane, the absorption coefficient decreased to 18% due to the change in the grating period and incident angle. The narrowband and tunable features of the As2S3−Ag−P(VDF‐TrFE) pyroelectric detector will benefit a variety of potential applications in sensors, optical spectroscopy, and imaging.more » « less
-
Pyroelectric materials are naturally electrically polarized and exhibits a built-in spontaneous polarization in their unit cell structure even in the absence of any externally applied electric field. These materials are regarded as one of the ideal detector elements for infrared applications because they have a fast response time and uniform sensitivity at room temperature across all wavelengths. Crystals of the perovskite lead titanate (PbTiO3) family show pyroelectric characteristics and undergo structural phase transitions. They have a high Curie temperature (the temperature at which the material changes from the ferroelectric (polar) to the paraelectric (nonpolar) phase), high pyroelectric coefficient, high spontaneous polarization, low dielectric constant, and constitute important component materials not only useful for infrared detection, but also with vast applications in electronic, optic, and MEMS devices. However, the preparation of large perfect and pure single crystals PbTiO3 is challenging. Additionally, difficulties arise in the application of such bulk crystals in terms of connection to processing circuits, large size, and high voltages required for their operation. In this part of the review paper, we explain the electrical behavior and characterization techniques commonly utilized to unravel the pyroelectric properties of lead titanate and its derivatives. Further, it explains how the material preparation techniques affect the electrical characteristics of resulting thin films. It also provides an in-depth discussion of the measurement of pyroelectric coefficients using different techniques.more » « less
-
Abstract Piezo‐ and pyroelectric materials are of interest, for example, for energy harvesting applications, for the development of tactile sensors, as well as neuromorphic computing. This study reports the observation of pyro‐ and piezoelectricity in thin surface‐attached polymer brushes containing zwitterionic and electrolytic side groups that are prepared via surface‐initiated polymerization. The pyro‐ and piezoelectric properties of the surface‐grafted polyelectrolyte brushes are found to sensitively depend on and can be tuned by variation of the counterion. The observed piezo‐ and pyroelectric properties reflect the structural complexity of polymer brushes, and are attributed to a complex interplay of the non‐uniform segment density within these films, together with a non‐uniform distribution of counterions and specific ion effects. The fabrication of thin pyroelectric films by surface‐initiated polymerization is an important addition to the existing strategies toward such materials. Surface‐initiated polymerization, in particular, allows for facile grafting of polar thin polymer films from a wide range of substrates via a straightforward two‐step protocol that obviates the need for multistep laborious synthetic procedures or thin film deposition protocols. The ability to produce polymer brushes with piezo‐ and pyroelectric properties opens up new avenues of application of these materials, for example, in energy harvesting or biosensing.more » « less
An official website of the United States government
