skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Primary Cilia Exhibit Mechanosensitivity to Cyclic Tensile Strain and Lineage-Dependent Expression in Adipose-Derived Stem Cells
Abstract Non-motile primary cilia are dynamic cellular sensory structures and are expressed in adipose-derived stem cells (ASCs). We have previously shown that primary cilia are involved in chemically-induced osteogenic differentiation of human ASC (hASCs)in vitro. Further, we have reported that 10% cyclic tensile strain (1 Hz, 4 hours/day) enhances hASC osteogenesis. We hypothesize that primary cilia respond to cyclic tensile strain in a lineage dependent manner and that their mechanosensitivity may regulate the dynamics of signaling pathways localized to the cilium. We found that hASC morphology, cilia length and cilia conformation varied in response to culture in complete growth, osteogenic differentiation, or adipogenic differentiation medium, with the longest cilia expressed in adipogenically differentiating cells. Further, we show that cyclic tensile strain both enhances osteogenic differentiation of hASCs while it suppresses adipogenic differentiation as evidenced by upregulation ofRUNX2gene expression and downregulation ofPPARGandIGF-1, respectively. This study demonstrates that hASC primary cilia exhibit mechanosensitivity to cyclic tensile strain and lineage-dependent expression, which may in part regulate signaling pathways localized to the primary cilium during the differentiation process. We highlight the importance of the primary cilium structure in mechanosensing and lineage specification and surmise that this structure may be a novel target in manipulating hASC for in tissue engineering applications.  more » « less
Award ID(s):
1702841
PAR ID:
10153921
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
9
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract An understanding of adipocyte responsiveness to G-protein-coupled receptor-(GPCR) derived signals must take into consideration the role of membrane microenvironments; that individual sub-populations of proteins may vary significantly across different regions of the cell, and that cell differentiation alters those microenvironments. 3T3-L1 pre-adipocytes undergo a dramatic phenotypic transformation during differentiation into adipocytes, requiring the development of a transient primary cilium. We demonstrate that melanin-concentrating hormone (MCH) receptor 1, a GPCR that stimulates appetite, translocates to the transient primary cilium during early 3T3-L1 cell adipogenesis. Furthermore, we used RNA-Seq to investigate whether MCH signaling is influenced by its receptor localization and whether MCH can influence the transcriptome of early adipocyte development. We found that MCH signaling is sensitive to receptor localization to cilia, and this alters the adipogenic transcriptional program. Also, novel MCH signaling pathways in 3T3-L1 cells are identified, including those for circadian rhythm, the inflammatory response, and ciliary biogenesis. The presence of active MCH-signaling pathways in pre-adipocytes and the discovery that these pathways intersect with the early adipogenic program, among other newly-identified signaling pathways, suggests that the use of MCH receptor 1 antagonists for clinical interventions may have unintended consequences on adipose tissue development. 
    more » « less
  2. Abstract Human mesenchymal stem cells (hMSCs) have great potential in cell-based therapies for tissue engineering and regenerative medicine due to their self-renewal and multipotent properties. Recent studies indicate that Notch1-Dll4 signaling is an important pathway in regulating osteogenic differentiation of hMSCs. However, the fundamental mechanisms that govern osteogenic differentiation are poorly understood due to a lack of effective tools to detect gene expression at single cell level. Here, we established a double-stranded locked nucleic acid (LNA)/DNA (LNA/DNA) nanobiosensor for gene expression analysis in single hMSC in both 2D and 3D microenvironments. We first characterized this LNA/DNA nanobiosensor and demonstrated the Dll4 mRNA expression dynamics in hMSCs during osteogenic differentiation. By incorporating this nanobiosensor with live hMSCs imaging during osteogenic induction, we performed dynamic tracking of hMSCs differentiation and Dll4 mRNA gene expression profiles of individual hMSC during osteogenic induction. Our results showed the dynamic expression profile of Dll4 during osteogenesis, indicating the heterogeneity of hMSCs during this dynamic process. We further investigated the role of Notch1-Dll4 signaling in regulating hMSCs during osteogenic differentiation. Pharmacological perturbation is applied to disrupt Notch1-Dll4 signaling to investigate the molecular mechanisms that govern osteogenic differentiation. In addition, the effects of Notch1-Dll4 signaling on hMSCs spheroids differentiation were also investigated. Our results provide convincing evidence supporting that Notch1-Dll4 signaling is involved in regulating hMSCs osteogenic differentiation. Specifically, Notch1-Dll4 signaling is active during osteogenic differentiation. Our results also showed that Dll4 is a molecular signature of differentiated hMSCs during osteogenic induction. Notch inhibition mediated osteogenic differentiation with reduced Alkaline Phosphatase (ALP) activity. Lastly, we elucidated the role of Notch1-Dll4 signaling during osteogenic differentiation in a 3D spheroid model. Our results showed that Notch1-Dll4 signaling is required and activated during osteogenic differentiation in hMSCs spheroids. Inhibition of Notch1-Dll4 signaling mediated osteogenic differentiation and enhanced hMSCs proliferation, with increased spheroid sizes. Taken together, the capability of LNA/DNA nanobiosensor to probe gene expression dynamics during osteogenesis, combined with the engineered 2D/3D microenvironment, enables us to study in detail the role of Notch1-Dll4 signaling in regulating osteogenesis in 2D and 3D microenvironment. These findings will provide new insights to improve cell-based therapies and organ repair techniques. 
    more » « less
  3. Osteoporosis is a common bone and metabolic disease that is characterized by bone density loss and microstructural degeneration. Human bone marrow-derived mesenchymal stem cells (hMSCs) are multipotent progenitor cells with the potential to differentiate into various cell types, including osteoblasts, chondrocytes, and adipocytes, which have been utilized extensively in the field of bone tissue engineering and cell-based therapy. Although fluid shear stress plays an important role in bone osteogenic differentiation, the cellular and molecular mechanisms underlying this effect remain poorly understood. Here, a locked nucleic acid (LNA)/DNA nanobiosensor was exploited to monitor mRNA gene expression of hMSCs that were exposed to physiologically relevant fluid shear stress to examine the regulatory role of Notch signaling during osteogenic differentiation. First, the effects of fluid shear stress on cell viability, proliferation, morphology, and osteogenic differentiation were investigated and compared. Our results showed shear stress modulates hMSCs morphology and osteogenic differentiation depending on the applied shear and duration. By incorporating this LNA/DNA nanobiosensor and alkaline phosphatase (ALP) staining, we further investigated the role of Notch signaling in regulating osteogenic differentiation. Pharmacological treatment is applied to disrupt Notch signaling to investigate the mechanisms that govern shear stress induced osteogenic differentiation. Our experimental results provide convincing evidence supporting that physiologically relevant shear stress regulates osteogenic differentiation through Notch signaling. Inhibition of Notch signaling mediates the effects of shear stress on osteogenic differentiation, with reduced ALP enzyme activity and decreased Dll4 mRNA expression. In conclusion, our results will add new information concerning osteogenic differentiation of hMSCs under shear stress and the regulatory role of Notch signaling. Further studies may elucidate the mechanisms underlying the mechanosensitive role of Notch signaling in stem cell differentiation. 
    more » « less
  4. A pioneering ds-GapM-LNA nanobiosensor for the monitoring of long non-coding RNA (lncRNA) expression in live cells during the osteogenic and adipogenic differentiation of human mesenchymal stem cells (hMSCs). 
    more » « less
  5. The balance between neural stem cell proliferation and neuronal differentiation is paramount for the appropriate development of the nervous system. Sonic hedgehog (Shh) is known to sequentially promote cell proliferation and specification of neuronal phenotypes, but the signaling mechanisms responsible for the developmental switch from mitogenic to neurogenic have remained unclear. Here, we show that Shh enhances Ca 2+ activity at the neural cell primary cilium of developing Xenopus laevis embryos through Ca 2+ influx via transient receptor potential cation channel subfamily C member 3 (TRPC3) and release from intracellular stores in a developmental stage-dependent manner. This ciliary Ca 2+ activity in turn antagonizes canonical, proliferative Shh signaling in neural stem cells by down-regulating Sox2 expression and up-regulating expression of neurogenic genes, enabling neuronal differentiation. These discoveries indicate that the Shh-Ca 2+ -dependent switch in neural cell ciliary signaling triggers the switch in Shh action from canonical-mitogenic to neurogenic. The molecular mechanisms identified in this neurogenic signaling axis are potential targets for the treatment of brain tumors and neurodevelopmental disorders. 
    more » « less