skip to main content


Title: Notch signaling and fluid shear stress in regulating osteogenic differentiation
Osteoporosis is a common bone and metabolic disease that is characterized by bone density loss and microstructural degeneration. Human bone marrow-derived mesenchymal stem cells (hMSCs) are multipotent progenitor cells with the potential to differentiate into various cell types, including osteoblasts, chondrocytes, and adipocytes, which have been utilized extensively in the field of bone tissue engineering and cell-based therapy. Although fluid shear stress plays an important role in bone osteogenic differentiation, the cellular and molecular mechanisms underlying this effect remain poorly understood. Here, a locked nucleic acid (LNA)/DNA nanobiosensor was exploited to monitor mRNA gene expression of hMSCs that were exposed to physiologically relevant fluid shear stress to examine the regulatory role of Notch signaling during osteogenic differentiation. First, the effects of fluid shear stress on cell viability, proliferation, morphology, and osteogenic differentiation were investigated and compared. Our results showed shear stress modulates hMSCs morphology and osteogenic differentiation depending on the applied shear and duration. By incorporating this LNA/DNA nanobiosensor and alkaline phosphatase (ALP) staining, we further investigated the role of Notch signaling in regulating osteogenic differentiation. Pharmacological treatment is applied to disrupt Notch signaling to investigate the mechanisms that govern shear stress induced osteogenic differentiation. Our experimental results provide convincing evidence supporting that physiologically relevant shear stress regulates osteogenic differentiation through Notch signaling. Inhibition of Notch signaling mediates the effects of shear stress on osteogenic differentiation, with reduced ALP enzyme activity and decreased Dll4 mRNA expression. In conclusion, our results will add new information concerning osteogenic differentiation of hMSCs under shear stress and the regulatory role of Notch signaling. Further studies may elucidate the mechanisms underlying the mechanosensitive role of Notch signaling in stem cell differentiation.  more » « less
Award ID(s):
2143151
NSF-PAR ID:
10394650
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Bioengineering and Biotechnology
Volume:
10
ISSN:
2296-4185
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Human mesenchymal stem cells (hMSCs) have great potential in cell-based therapies for tissue engineering and regenerative medicine due to their self-renewal and multipotent properties. Recent studies indicate that Notch1-Dll4 signaling is an important pathway in regulating osteogenic differentiation of hMSCs. However, the fundamental mechanisms that govern osteogenic differentiation are poorly understood due to a lack of effective tools to detect gene expression at single cell level. Here, we established a double-stranded locked nucleic acid (LNA)/DNA (LNA/DNA) nanobiosensor for gene expression analysis in single hMSC in both 2D and 3D microenvironments. We first characterized this LNA/DNA nanobiosensor and demonstrated the Dll4 mRNA expression dynamics in hMSCs during osteogenic differentiation. By incorporating this nanobiosensor with live hMSCs imaging during osteogenic induction, we performed dynamic tracking of hMSCs differentiation and Dll4 mRNA gene expression profiles of individual hMSC during osteogenic induction. Our results showed the dynamic expression profile of Dll4 during osteogenesis, indicating the heterogeneity of hMSCs during this dynamic process. We further investigated the role of Notch1-Dll4 signaling in regulating hMSCs during osteogenic differentiation. Pharmacological perturbation is applied to disrupt Notch1-Dll4 signaling to investigate the molecular mechanisms that govern osteogenic differentiation. In addition, the effects of Notch1-Dll4 signaling on hMSCs spheroids differentiation were also investigated. Our results provide convincing evidence supporting that Notch1-Dll4 signaling is involved in regulating hMSCs osteogenic differentiation. Specifically, Notch1-Dll4 signaling is active during osteogenic differentiation. Our results also showed that Dll4 is a molecular signature of differentiated hMSCs during osteogenic induction. Notch inhibition mediated osteogenic differentiation with reduced Alkaline Phosphatase (ALP) activity. Lastly, we elucidated the role of Notch1-Dll4 signaling during osteogenic differentiation in a 3D spheroid model. Our results showed that Notch1-Dll4 signaling is required and activated during osteogenic differentiation in hMSCs spheroids. Inhibition of Notch1-Dll4 signaling mediated osteogenic differentiation and enhanced hMSCs proliferation, with increased spheroid sizes. Taken together, the capability of LNA/DNA nanobiosensor to probe gene expression dynamics during osteogenesis, combined with the engineered 2D/3D microenvironment, enables us to study in detail the role of Notch1-Dll4 signaling in regulating osteogenesis in 2D and 3D microenvironment. These findings will provide new insights to improve cell-based therapies and organ repair techniques.

     
    more » « less
  2. Abstract

    Current treatments for craniomaxillofacial (CMF) defects motivate the design of instructive biomaterials that can promote osteogenic healing of complex bone defects. We report methods to promote in vitro osteogenesis of human mesenchymal stem cells (hMSCs) within a model mineralized collagen scaffold via the incorporation of ascorbic acid (vitamin C), a key factor in collagen biosynthesis and bone mineralization. An addition of 5 w/v% ascorbic acid into the base mineralized collagen scaffold significantly changes key morphology characteristics including porosity, macrostructure, and microstructure. This modification promotes hMSC metabolic activity, ALP activity, and hMSC‐mediated deposition of calcium and phosphorous. Additionally, the incorporation of ascorbic acid influences osteogenic gene expression (BMP‐2,RUNX2,COL1A2) and delays the expression of genes associated with osteoclast activity and bone resorption (OPN,CTSK), though it reduces the secretion of OPG. Together, these findings highlight ascorbic acid as a relevant component for mineralized collagen scaffold design to promote osteogenic differentiation and new bone formation for improved CMF outcomes.

     
    more » « less
  3. A pioneering ds-GapM-LNA nanobiosensor for the monitoring of long non-coding RNA (lncRNA) expression in live cells during the osteogenic and adipogenic differentiation of human mesenchymal stem cells (hMSCs).

     
    more » « less
  4. Abstract

    Repairing large tissue defects often represents a great challenge in clinics due to issues regarding lack of donors, mismatched sizes, irregular shapes, and immune rejection. 3D printed scaffolds are attractive for growing cells and producing tissue constructs because of the intricate control over pore size, porosity, and geometric shape, but the lack of biomimetic surface nanotopography and limited biomolecule presenting capacity render them less efficacious in regulating cell responses. Herein, a facile method for coating 3D printed scaffolds with electrospun nanofiber segments is reported. The surface morphology of modified 3D scaffolds changes dramatically, displaying a biomimetic nanofibrous structure, while the bulk mechanical property, pore size, and porosity are not significantly compromised. The short nanofibers‐decorated 3D printed scaffolds significantly promote adhesion and proliferation of pre‐osteoblasts and bone marrow mesenchymal stem cells (BMSCs). Further immobilization of bone morphogenetic protein‐2 mimicking peptides to nanofiber segments‐decorated 3D printed scaffolds show enhanced mRNA expressions of osteogenic markers Runx2, Alp, OCN, and BSP in BMSCs, indicating the enhancement of BMSCs osteogenic differentiation. Together, the combination of 3D printing and electrospinning is a promising approach to greatly expand the functions of 3D printed scaffolds and enhance the efficacy of 3D printed scaffolds for tissue engineering.

     
    more » « less
  5. Abstract

    Implantation of stem cells for tissue regeneration faces significant challenges such as immune rejection and teratoma formation. Cell‐free tissue regeneration thus has a potential to avoid these problems. Stem cell derived exosomes do not cause immune rejection or generate malignant tumors. Here, exosomes that can induce osteogenic differentiation of human mesenchymal stem cells (hMSCs) are identified and used to decorate 3D‐printed titanium alloy scaffolds to achieve cell‐free bone regeneration. Specifically, the exosomes secreted by hMSCs osteogenically pre‐differentiated for different times are used to induce the osteogenesis of hMSCs. It is discovered that pre‐differentiation for 10 and 15 days leads to the production of osteogenic exosomes. The purified exosomes are then loaded into the scaffolds. It is found that the cell‐free exosome‐coated scaffolds regenerate bone tissue as efficiently as hMSC‐seeded exosome‐free scaffolds within 12 weeks. RNA‐sequencing suggests that the osteogenic exosomes induce the osteogenic differentiation by using their cargos, including upregulated osteogenic miRNAs (Hsa‐miR‐146a‐5p, Hsa‐miR‐503‐5p, Hsa‐miR‐483‐3p, and Hsa‐miR‐129‐5p) or downregulated anti‐osteogenic miRNAs (Hsa‐miR‐32‐5p, Hsa‐miR‐133a‐3p, and Hsa‐miR‐204‐5p), to activate the PI3K/Akt and MAPK signaling pathways. Consequently, identification of osteogenic exosomes secreted by pre‐differentiated stem cells and the use of them to replace stem cells represent a novel cell‐free bone regeneration strategy.

     
    more » « less