skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High performance III-V photoelectrodes for solar water splitting via synergistically tailored structure and stoichiometry
Abstract Catalytic interface of semiconductor photoelectrodes is critical for high-performance photoelectrochemical solar water splitting because of its multiple roles in light absorption, electrocatalysis, and corrosion protection. Nevertheless, simultaneously optimizing each of these processes represents a materials conundrum owing to conflicting requirements of materials attributes at the electrode surface. Here we show an approach that can circumvent these challenges by collaboratively exploiting corrosion-resistant surface stoichiometry and structurally-tailored reactive interface. Nanoporous, density-graded surface of ‘black’ gallium indium phosphide (GaInP2), when combined with ammonium-sulfide-based surface passivation, effectively reduces reflection and surface recombination of photogenerated carriers for high efficiency photocatalysis in the hydrogen evolution half-reaction, but also augments electrochemical durability with lifetime over 124 h via strongly suppressed kinetics of corrosion. Such synergistic control of stoichiometry and structure at the reactive interface provides a practical pathway to concurrently enhance efficiency and durability of semiconductor photoelectrodes without solely relying on the development of new protective materials.  more » « less
Award ID(s):
1707169
PAR ID:
10153934
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
10
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Metal-insulator-semiconductor (MIS) structures are widely used in Si-based solar water-splitting photoelectrodes to protect the Si layer from corrosion. Typically, there is a tradeoff between efficiency and stability when optimizing insulator thickness. Moreover, lithographic patterning is often required for fabricating MIS photoelectrodes. In this study, we demonstrate improved Si-based MIS photoanodes with thick insulating layers fabricated using thin-film reactions to create localized conduction paths through the insulator and electrodeposition to form metal catalyst islands. These fabrication approaches are low-cost and highly scalable, and yield MIS photoanodes with low onset potential, high saturation current density, and excellent stability. By combining this approach with a p+n-Si buried junction, further improved oxygen evolution reaction (OER) performance is achieved with an onset potential of 0.7 V versus reversible hydrogen electrode (RHE) and saturation current density of 32 mA/cm2under simulated AM1.5G illumination. Moreover, in stability testing in 1 M KOH aqueous solution, a constant photocurrent density of ~22 mA/cm2is maintained at 1.3 V versus RHE for 7 days. 
    more » « less
  2. The surface states of photoelectrodes as catalysts heavily influence their performance in photocatalysis and photoelectrocatalysis applications. These catalysts are necessary for developing robust solutions to the climate and global energy crises by promoting CO2 reduction, N2 reduction, contaminant degradation, and water splitting. The semiconductors that can fill this role are beholden as photoelectrodes to the processes of charge generation, separation, and utilization, which are in turn products of surface states, surface electric fields, and surface carrier dynamics. Methods which are typically used for studying these processes to improve semiconductors are indirect, invasive, not surface specific, not practical under ambient conditions, or a combination thereof. Recently, nonlinear optical processes such as electronic sum-frequency generation (ESFG) and second-harmonic generation (ESHG) have gained popularity in investigations of semiconductor catalysts systems. Such techniques possess many advantages of in-situ analysis, interfacial specificity, non-invasiveness, as well as the ability to be used under any conditions. In this review, we detail the importance of surface states and their intimate relationship with catalytic performance, outline methods to investigate semiconductor surface states, electric fields, and carrier dynamics and highlight recent contributions to the field through interface-specific spectroscopy. We will also discuss how the recent development of heterodyne-detected ESHG (HD-ESHG) was used to extract charged surface states through phase information, time-resolved ESFG (TR-ESFG) to obtain in-situ dynamic process monitoring, and two-dimensional ESFG (2D-ESFG) to explore surface state couplings, and how further advancements in spectroscopic technology can fill in knowledge gaps to accelerate photoelectrocatalyst utilization. We believe that this work will provide a valuable summary of the importance of semiconductor surface states and interfacial electronic properties, inform a broad audience of the capabilities of nonlinear optical techniques, and inspire future original approaches to improving photocatalytic and photoelectrocatalytic devices. 
    more » « less
  3. null (Ed.)
    Abstract High-entropy alloys (HEAs) with multiple principal elements represent a paradigm shift in structural alloy design and show excellent surface degradation resistance in corrosive environment. Here, the tribo-corrosion response of laser-engineered net-shaped CoCrFeMnNi HEA was evaluated in 3.5 wt% NaCl solution at room temperature. The additively manufactured (AM-ed) CoCrFeMnNi showed five times lower wear rate, regenerative passivation, and nobler corrosion potential during tribo-corrosion test compared to its arc-melted counterpart. A significant anisotropy was seen in the tribo-corrosion response with 45° to the build direction showing better performance compared to tests along the build direction and perpendicular to it. The open circuit potential curves were characterized by a sharp drop to more negative values as wear began, followed by continuous change for the active tribo-corrosion duration and finally a jump to nobler value at the end of the test indicating excellent surface re-passivation for the AM-ed alloy. The superior tribo-corrosion resistance of AM-ed CoCrFeMnNi was attributed to the refined microstructure and highly protective surface passivation layer promoted by the sub-grain cellular structure formed during additive manufacturing. These results highlight the potential of utilizing additive manufacturing of HEAs for use in extreme environments that require a combination of tribo-corrosion resistance, mechanical durability, extended service life, and net shaping with low dimensional tolerance. 
    more » « less
  4. Abstract Glass for pharmaceutical packaging requires high chemical durability for the safe storage and distribution of newly developed medicines. In borosilicate pharmaceutical glasses which typically contain a mixture of different modifier ions (alkali or alkaline earth), the dependence of the chemical durability on alkaline earth oxide concentrations is not well understood. Here, we have designed a series of borosilicate glasses with systematic substitutions of CaO with MgO while keeping their total concentrations at 13 mol% and a fixed Na2O concentration of 12.7 mol%. We used these glasses to investigate the influence ofR = [MgO]/([MgO] + [CaO]) on the resistance to aqueous corrosion at 80°C for 40 days. It was found that this type of borosilicate glass undergoes both leaching of modifier ions through an ion exchange process and etching of the glass network, leading to dissolution of the glass surface. Based on the concentration analysis of the Si and B species dissolved into the solution phase, the dissolved layer thickness was found to increase from ~100 to ~170 nm asRincreases from 0 to 1. The depth profiling analysis of the glasses retrieved from the solution showed that the concentration of modifier ions (Na+, Ca2+, and Mg2+) at the interface between the solution and the corroded glass surface decreased to around 40%–60% of the corresponding bulk concentrations, regardless ofRand the leaching of modifier cations resulted in a silica‐rich layer in the surface. The leaching of Ca2+and Mg2+ions occurred within ~50 and <25 nm, respectively, from the glass surface and this thickness was not a strong function ofR. The leaching of Na+ions varied monotonically; the thickness of the Na+depletion layer increased from ~100 nm atR = 0 to ~200 nm atR = 1. Vibrational spectroscopy analysis suggested that the partial depletion of the ions may have caused some degree of the network re‐arrangement or re‐polymerization in the corroded layer. Overall, these results suggested that for the borosilicate glass, replacing [CaO] with [MgO] deteriorates the chemical durability in aqueous solution. 
    more » « less
  5. Chemical modification of semiconductor surfaces with molecular electrocatalysts provides a strategy for developing integrated homogeneous-heterogeneous materials capable of converting sunlight to fuels and other value-added products, but their development is hampered by an incomplete understanding of the factors limiting their performance. Although kinetic models have been separately developed to describe photoelectrochemical or homogeneous electrocatalytic reactions, related modeling for molecular-modified hybrid photoelectrodes has not been as extensively elaborated. This presentation addresses the interplay between light absorption, charge transfer, and catalytic activity during photoelectrosynthetic transformations at a molecular-modified semiconductor surface. The analysis provides opportunities to better understand the principles governing these hierarchal constructs and develop improved photocatalytic assemblies. 
    more » « less