Abstract The Arctic seasonal halocline impacts the exchange of heat, energy, and nutrients between the surface and the deeper ocean, and it is changing in response to Arctic sea ice melt over the past several decades. Here, we assess seasonal halocline formation in 1975 and 2006–12 by comparing daily, May–September, salinity profiles collected in the Canada Basin under sea ice. We evaluate differences between the two time periods using a one-dimensional (1D) bulk model to quantify differences in freshwater input and vertical mixing. The 1D metrics indicate that two separate factors contribute similarly to stronger stratification in 2006–12 relative to 1975: 1) larger surface freshwater input and 2) less vertical mixing of that freshwater. The larger freshwater input is mainly important in August–September, consistent with a longer melt season in recent years. The reduced vertical mixing is mainly important from June until mid-August, when similar levels of freshwater input in 1975 and 2006–12 are mixed over a different depth range, resulting in different stratification. These results imply that decadal changes to ice–ocean dynamics, in addition to freshwater input, significantly contribute to the stronger seasonal stratification in 2006–12 relative to 1975. These findings highlight the need for near-surface process studies to elucidate the impact of lateral processes and ice–ocean momentum exchange on vertical mixing. Moreover, the results may provide insight for improving the representation of decadal changes to Arctic upper-ocean stratification in climate models that do not capture decadal changes to vertical mixing.
more »
« less
Vertical redistribution of salt and layered changes in global ocean salinity
Abstract Salinity is an essential proxy for estimating the global net freshwater input into the ocean. Due to the limited spatial and temporal coverage of the existing salinity measurements, previous studies of global salinity changes focused mostly on the surface and upper oceans. Here, we examine global ocean salinity changes and ocean vertical salt fluxes over the full depth in a dynamically consistent and data-constrained ocean state estimate. The changes of the horizontally averaged salinity display a vertically layered structure, consistent with the profiles of the ocean vertical salt fluxes. For salinity changes in the relatively well-observed upper ocean, the contribution of vertical exchange of salt can be on the same order of the net surface freshwater input. The vertical redistribution of salt thus should be considered in inferring changes in global ocean salinity and the hydrological cycle from the surface and upper ocean measurements.
more »
« less
- Award ID(s):
- 1736633
- PAR ID:
- 10153941
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Continuous measurements from the OSNAP (Overturning in the Subpolar North Atlantic Program) array yield the first estimates of trans-basin heat and salinity transports in the subpolar latitudes. For the period from August 2014 to May 2018, there is a poleward heat transport of 0.50 ± 0.05 PW and a poleward salinity transport of 12.5 ± 1.0 Sv across the OSNAP section. Based on the mass and salt budget analyses, we estimate that a surface freshwater input of 0.36 ± 0.05 Sv over the broad subpolar-Arctic region is needed to balance the ocean salinity change created by the OSNAP transports. The overturning circulation is largely responsible for setting these heat and salinity transports (and the derived surface freshwater input) derived from the OSNAP array, while the gyre (isopycnal) circulation contributes to a lesser, but still significant, extent. Despite its relatively weak overturning and heat transport, the Labrador Sea is a strong contributor to salinity and freshwater changes in the subpolar region. Combined with trans-basin transport estimates at other locations, we provide new estimates for the time-mean surface heat and freshwater divergences over a wide domain of the Arctic-North Atlantic region to the north and south of the OSNAP line. Furthermore, we estimate the total heat and freshwater exchanges across the surface area of the extratropical North Atlantic between the OSNAP and the RAPID-MOCHA (RAPID Meridional Overturning Circulation and Heat-flux Array) arrays, by combining the cross-sectional transports with vertically-integrated ocean heat and salinity content. Comparisons with the air-sea heat and freshwater fluxes from atmospheric reanalysis products show an overall consistency, yet with notable differences in the magnitudes during the observation time period.more » « less
-
Abstract Future increases in the frequency of tidal flooding due to sea level rise (SLR) are likely to affect pore water salinities in coastal aquifers. In this study, we investigate the impact of increased tidal flooding frequency on salinity and flow dynamics in coastal aquifers using numerical variable‐density variably‐saturated groundwater flow and salt transport models. Short (sub‐daily) and long (decadal) period tides are combined with SLR projections to drive continuous 80‐year models of flow and salt transport. Results show that encroaching intertidal zones lead to both periodic and long‐term vertical salinization of the upper aquifer. Salinization of the upper aquifer due to tidal flooding forces the lower interface seaward, even under SLR. System dynamics are controlled by the interplay between SLR and long period tidal forcing associated with perigean spring tides and the 18.6‐year lunar nodal cycle. Periodic tidal flooding substantially enhances intertidal saltwater‐freshwater mixing, resulting in a 6‐ to 10‐fold expansion of the intertidal saltwater‐freshwater mixing area across SLR scenarios. The onset of the expansion coincides with extreme high water levels resulting from lunar nodal cycling of tidal constituent amplitudes. The findings are the first to demonstrate the combined effects of gradual SLR and short and long period tides on aquifer salinity distributions, and reveal competing influences of SLR on saltwater intrusion. The results are likely to have important implications for coastal ocean chemical fluxes and groundwater resources as tidal flooding intensifies worldwide.more » « less
-
Abstract The mixing of tracers by mesoscale eddies, parameterized in many ocean general circulation models (OGCMs) as a diffusive‐advective process, contributes significantly to the distribution of tracers in the ocean. In the ocean interior, diffusive contribution occurs mostly along the direction parallel to local neutral density surfaces. However, near the surface of the ocean, small‐scale turbulence and the presence of the boundary itself break this constraint and the mesoscale transport occurs mostly along a plane parallel to the ocean surface (horizontal). Although this process is easily represented in OGCMs with geopotential vertical coordinates, the representation is more challenging in OGCMs that use a general vertical coordinate, where surfaces can be tilted with respect to the horizontal. We propose a method for representing the diffusive horizontal mesoscale fluxes within the surface boundary layer of general vertical coordinate OGCMs. The method relies on regridding/remapping techniques to represent tracers in a geopotential grid. Horizontal fluxes are calculated on this grid and then remapped back to the native grid, where fluxes are applied. The algorithm is implemented in an ocean model and tested in idealized and realistic settings. Horizontal diffusion can account for up to 10% of the total northward heat transport in the Southern Ocean and Western boundary current regions of the Northern Hemisphere. It also reduces the vertical stratification of the upper ocean, which results in an overall deepening of the surface boundary layer depth. Finally, enabling horizontal diffusion leads to meaningful reductions in the near‐surface global bias of potential temperature and salinity.more » « less
-
Doi, Hideyuki (Ed.)A large volume of freshwater is incorporated in the relatively fresh (salinity ~32–33) Pacific Ocean waters that are transported north through the Bering Strait relative to deep Atlantic salinity in the Arctic Ocean (salinity ~34.8). These freshened waters help maintain the halocline that separates cold Arctic surface waters from warmer Arctic Ocean waters at depth. The stable oxygen isotope composition of the Bering Sea contribution to the upper Arctic Ocean halocline was established as early as the late 1980’s as having a δ 18 O V - SMOW value of approximately -1.1‰. More recent data indicates a shift to an isotopic composition that is more depleted in 18 O (mean δ 18 O value ~-1.5‰). This shift is supported by a data synthesis of >1400 water samples (salinity from 32.5 to 33.5) from the northern Bering and Chukchi seas, from the years 1987–2020, which show significant year-to-year, seasonal and regional variability. This change in the oxygen isotope composition of water in the upper halocline is consistent with observations of added freshwater in the Canada Basin, and mooring-based estimates of increased freshwater inflows through Bering Strait. Here, we use this isotopic time-series as an independent means of estimating freshwater flux changes through the Bering Strait. We employed a simple end-member mixing model that requires that the volume of freshwater (including runoff and other meteoric water, but not sea ice melt) flowing through Bering Strait has increased by ~40% over the past two decades to account for a change in the isotopic composition of the 33.1 salinity water from a δ 18 O value of approximately -1.1‰ to a mean of -1.5‰. This freshwater flux change is comparable with independent published measurements made from mooring arrays in the Bering Strait (freshwater fluxes rising from 2000–2500 km 3 in 2001 to 3000–3500 km 3 in 2011).more » « less