skip to main content


Title: Magnetoelectric behavior via a spin state transition
Abstract

In magnetoelectric materials, magnetic and dielectric/ferroelectric properties couple to each other. This coupling could enable lower power consumption and new functionalities in devices such as sensors, memories and transducers, since voltages instead of electric currents are sensing and controlling the magnetic state. We explore a different approach to magnetoelectric coupling in which we use the magnetic spin state instead of the more traditional ferro or antiferromagnetic order to couple to electric properties. In our molecular compound, magnetic field induces a spin crossover from the S = 1 to the S = 2 state of Mn3+, which in turn generates molecular distortions and electric dipoles. These dipoles couple to the magnetic easy axis, and form different polar, antipolar and paraelectric phases vs magnetic field and temperature. Spin crossover compounds are a large class of materials where the spin state can modify the structure, and here we demonstrate that this is a route to magnetoelectric coupling.

 
more » « less
NSF-PAR ID:
10153953
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
10
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Magnetoelectric coupling is achieved near room temperature in a spin crossover FeIImolecule‐based compound,[Fe(1bpp)2](BF4)2. Large atomic displacements resulting from Jahn–Teller distortions induce a change in the molecule dipole moment when switching between high‐spin and low‐spin states leading to a step‐wise change in the electric polarization and dielectric constant. For temperatures in the region of bistability, the changes in magnetic and electrical properties are induced with a remarkably low magnetic field of 3 T. This result represents a successful expansion of magnetoelectric spin crossovers towards ambient conditions. Moreover, the observed 0.3–0.4 mC m−2changes in theH‐induced electric polarization suggest that the high strength of the coupling obtained via this route is accessible not just at cryogenic temperatures but also near room temperature, a feature that is especially appealing in the light of practical applications.

     
    more » « less
  2. Abstract

    Multiferroic materials composed of ferromagnetic and ferroelectric components are interesting for technological applications due to sizable magnetoelectric coupling allowing the control of magnetic properties by electric fields. Due to being compatible with the silicon-based technology, HfO2-based ferroelectrics could serve as a promising component in the composite multiferroics. Recently, a strong charge-mediated magnetoelectric coupling has been predicted for a Ni/HfO2multiferroic heterostructure. Here, using density functional theory calculations, we systematically study the effects of the interfacial oxygen stoichiometry relevant to experiments on the magnetoelectric effect at the Ni/HfO2interface. We demonstrate that the magnetoelectric effect is very sensitive to the interface stoichiometry and is reversed if an oxidized Ni monolayer is formed at the interface. The reversal of the magnetoelectric effect is driven by a strong Ni−O bonding producing exchange-split polarization-sensitive antibonding states at the Fermi energy. We argue that the predicted reversal of the magnetoelectric effect is typical for other 3dferromagnetic metals, such as Co and Fe, where the metal-oxide antibonding states have an opposite spin polarization compared to that in the pristine ferromagnetic metals. Our results provide an important insight into the mechanism of the interfacial magnetoelectric coupling, which is essential for the physics and application of multiferroic heterostructures.

     
    more » « less
  3. Abstract

    Haldane topological materials contain unique antiferromagnetic chains with symmetry-protected energy gaps. Such materials have potential applications in spintronics and future quantum computers. Haldane topological solids typically consist of spin-1 chains embedded in extended three-dimensional (3D) crystal structures. Here, we demonstrate that [Ni(μ−4,4′-bipyridine)(μ-oxalate)]n(NiBO) instead adopts a two-dimensional (2D) metal-organic framework (MOF) structure of Ni2+spin-1 chains weakly linked by 4,4′-bipyridine. NiBO exhibits Haldane topological properties with a gap between the singlet ground state and the triplet excited state. The latter is split by weak axial and rhombic anisotropies. Several experimental probes, including single-crystal X-ray diffraction, variable-temperature powder neutron diffraction (VT-PND), VT inelastic neutron scattering (VT-INS), DC susceptibility and specific heat measurements, high-field electron spin resonance, and unbiased quantum Monte Carlo simulations, provide a detailed, comprehensive characterization of NiBO. Vibrational (also known as phonon) properties of NiBO have been probed by INS and density-functional theory (DFT) calculations, indicating the absence of phonons near magnetic excitations in NiBO, suppressing spin-phonon coupling. The work here demonstrates that NiBO is indeed a rare 2D-MOF Haldane topological material.

     
    more » « less
  4. Pure spin currents can be generated via thermal excitations of magnons. These magnon spin currents serve as carriers of information in insulating materials, and controlling them using electrical means may enable energy efficient information processing. Here, we demonstrate electric field control of magnon spin currents in the antiferromagnetic insulator Cr 2 O 3 . We show that the thermally driven magnon spin currents reveal a spin-flop transition in thin-film Cr 2 O 3 . Crucially, this spin-flop can be turned on or off by applying an electric field across the thickness of the film. Using this tunability, we demonstrate electric field–induced switching of the polarization of magnon spin currents by varying only a gate voltage while at a fixed magnetic field. We propose a model considering an electric field–dependent spin-flop transition, arising from a change in sublattice magnetizations via a magnetoelectric coupling. These results provide a different approach toward controlling magnon spin current in antiferromagnets. 
    more » « less
  5. Abstract

    Experimental studies to reveal the cooperative relationship between spin, energy, and polarization through intermolecular charge‐transfer dipoles to harvest nonradiative triplets into radiative singlets in exciplex light‐emitting diodes are reported. Magneto‐photoluminescence studies reveal that the triplet‐to‐singlet conversion in exciplexes involves an artificially generated spin‐orbital coupling (SOC). The photoinduced electron parametric resonance measurements indicate that the intermolecular charge‐transfer occurs with forming electric dipoles (D+•→A−•), providing the ionic polarization to generate SOC in exciplexes. By having different singlet‐triplet energy differences (ΔEST) in 9,9′‐diphenyl‐9H,9′H‐3,3′‐bicarbazole (BCzPh):3′,3′″,3′″″‐(1,3,5‐triazine‐2,4,6‐triyl)tris(([1,1′‐biphenyl]‐3‐carbonitrile)) (CN‐T2T) (ΔEST= 30 meV) and BCzPh:bis‐4,6‐(3,5‐di‐3‐pyridylphenyl)‐2‐methyl‐pyrimidine (B3PYMPM) (ΔEST= 130 meV) exciplexes, the SOC generated by the intermolecular charge‐transfer states shows large and small values (reflected by different internal magnetic parameters: 274 vs 17 mT) with high and low external quantum efficiency maximum, EQEmax(21.05% vs 4.89%), respectively. To further explore the cooperative relationship of spin, energy, and polarization parameters, different photoluminescence wavelengths are selected to concurrently change SOC, ΔEST, and polarization while monitoring delayed fluorescence. When the electron clouds become more deformed at a longer emitting wavelength due to reduced dipole (D+•→A−•) size, enhanced SOC, increased orbital polarization, and decreased ΔESTcan simultaneously occur to cooperatively operate the triplet‐to‐singlet conversion.

     
    more » « less