Abstract Nanosized perovskite ferroelectrics are widely employed in several electromechanical, photonics, and thermoelectric applications. Scaling of ferroelectric materials entails a severe reduction in the lattice (phonon) thermal conductivity, particularly at sub‐100 nm length scales. Such thermal conductivity reduction can be accurately predicted using the information of phonon mean free path (MFP) distribution. The current understanding of phonon MFP distribution in perovskite ferroelectrics is still inconclusive despite the critical thermal management implications. Here, high‐quality single‐crystalline barium titanate (BTO) thin films, a representative perovskite ferroelectric material, are grown at several thicknesses. Using experimental thermal conductivity measurements and first‐principles based modeling (including four‐phonon scattering), the phonon MFP distribution is determined in BTO. The simulation results agree with the measured thickness‐dependent thermal conductivity. The results show that the phonons with sub‐100 nm MFP dominate the thermal transport in BTO, and phonons with MFP exceeding 10 nm contribute ≈35% to the total thermal conductivity, in significant contrast to previously published experimental results. The experimentally validated phonon MFP distribution is consistent with the theoretical predictions of other complex crystals with strong anharmonicity. This work paves the way for thermal management in nanostructured and ferroelectric‐domain‐engineered systems for oxide perovskite‐based functional materials.
more »
« less
Ultralow lattice thermal conductivity of chalcogenide perovskite CaZrSe3 contributes to high thermoelectric figure of merit
Abstract An emerging chalcogenide perovskite, CaZrSe3, holds promise for energy conversion applications given its notable optical and electrical properties. However, knowledge of its thermal properties is extremely important, e.g. for potential thermoelectric applications, and has not been previously reported in detail. In this work, we examine and explain the lattice thermal transport mechanisms in CaZrSe3using density functional theory and Boltzmann transport calculations. We find the mean relaxation time to be extremely short corroborating an enhanced phonon–phonon scattering that annihilates phonon modes, and lowers thermal conductivity. In addition, strong anharmonicity in the perovskite crystal represented by the Grüneisen parameter predictions, and low phonon number density for the acoustic modes, results in the lattice thermal conductivity to be limited to 1.17 W m−1 K−1. The average phonon mean free path in the bulk CaZrSe3sample (N → ∞) is 138.1 nm and nanostructuring CaZrSe3sample to ~10 nm diminishes the thermal conductivity to 0.23 W m−1 K−1. We also find that p-type doping yields higher predictions of thermoelectric figure of merit than n-type doping, and values ofZT~0.95–1 are found for hole concentrations in the range 1016–1017 cm−3and temperature between 600 and 700 K.
more »
« less
- Award ID(s):
- 1753770
- PAR ID:
- 10153963
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- npj Computational Materials
- Volume:
- 5
- Issue:
- 1
- ISSN:
- 2057-3960
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The potential of an environmentally friendly and emerging chalcogenide perovskite CaZrSe3for thermoelectric applications is examined. The orthorhombic phase of CaZrSe3has an optimum band gap (1.35–1.40 eV) for single‐junction photovoltaic applications. The predictions reveal that CaZrSe3possesses an absorption coefficient of ≈4 × 105cm−1at photon energies of 2.5 eV with an early onset of optical absorption (≈0.2 eV) well below the optimum band gap. Seebeck coefficient,S, is inversely proportional to the carrier mobility as the calculated average effective mass for electrons is higher than for holes;p‐type doping enhances the electrical conductivity, σ. The electronic thermal conductivityκeremains low at all temperatures. The upper limit of the thermoelectric figure of merit (ZTe) attains ≈1.0 when doped at specific chemical potentials, while a high Seebeck coefficient contributes to the ZTe = 1.95 at 50 K forp‐type doping with 1018cm−3carrier concentration, demonstrating high thermoelectric efficiency.more » « less
-
Zintl phase Mg 3 Sb 2 , which has ultra-low thermal conductivity, is a promising anisotropic thermoelectric material. It is worth noting that the prediction and experiment value of lattice thermal conductivity ( κ ) maintain a remarkable difference, troubling the development and application. Thus, we firstly included the four-phonon scattering processes effect and performed the Peierls–Boltzmann transport equation (PBTE) combined with the first-principles lattice dynamics to study the lattice thermal transport in Mg 3 Sb 2 . The results showed that our theoretically predicted κ is consistent with the experimentally measured, breaking through the limitations of the traditional calculation methods. The prominent four-phonon scatterings decreased phonon lifetime, leading to the κ of Mg 3 Sb 2 at 300 K from 2.45 (2.58) W m −1 K −1 to 1.94 (2.19) W m −1 K −1 along the in (cross)-plane directions, respectively, and calculation accuracy increased by 20%. This study successfully explains the lattice thermal transport behind mechanism in Mg 3 Sb 2 and implies guidance to advance the prediction accuracy of thermoelectric materials.more » « less
-
Abstract Under photon excitation, 2D materials experience cascading energy transfer from electrons to optical phonons (OPs) and acoustic phonons (APs). Despite few modeling works, it remains a long‐history open problem to distinguish the OP and AP temperatures, not to mention characterizing their energy coupling factor (G). Here, the temperatures of longitudinal/transverse optical (LO/TO) phonons, flexural optical (ZO) phonons, and APs are distinguished by constructing steady and nanosecond (ns) interphonon branch energy transport states and simultaneously probing them using nanosecond energy transport state‐resolved Raman spectroscopy. ΔTOP −APis measured to take more than 30% of the Raman‐probed temperature rise. A breakthrough is made on measuring the intrinsic in‐plane thermal conductivity of suspended nm MoS2and MoSe2by completely excluding the interphonon cascading energy transfer effect, rewriting the Raman‐based thermal conductivity measurement of 2D materials.GOP↔APfor MoS2, MoSe2, and graphene paper (GP) are characterized. For MoS2and MoSe2,GOP↔APis in the order of 1015and 1014W m−3K−1andGZO↔APis much smaller thanGLO/TO↔AP. Under ns laser excitation,GOP↔APis significantly increased, probably due to the reduced phonon scattering time by the significantly increased hot carrier population. For GP,GLO/TO↔APis 0.549 × 1016W m−3K−1, agreeing well with the value of 0.41 × 1016W m−3K−1by first‐principles modeling.more » « less
-
Abstract Spin excitations, including magnons and spinons, can carry thermal energy and spin information. Studying spin‐mediated thermal transport is crucial for spin caloritronics, enabling efficient heat dissipation in microelectronics and advanced thermoelectric applications. However, designing quantum materials with controllable spin transport is challenging. Here, highly textured spin‐chain compound Ca2CuO3is synthesized using a solvent‐cast cold pressing technique, aligning 2D nanostructures with spin chains perpendicular to the pressing direction. The sample exhibits high thermal conductivity anisotropy and an excellent room‐temperature thermal conductivity of 12 ± 0.7 W m−1K−1, surpassing all polycrystalline quantum magnets. Such a high value is attributed to the significant spin‐mediated thermal conductivity of 10 ± 1 W m−1K−1, the highest reported among all polycrystalline quantum materials. Analysis through a 1D kinetic model suggests that near room‐temperature, spinon thermal transport is dominated by coupling with high‐frequency phonons, while extrinsic spinon‐defect scattering is negligible. Additionally, this method is used to prepare textured La2CuO4, exhibiting highly anisotropic magnon thermal transport and demonstrating its broad applicability. A distinct role of defect scattering in spin‐mediated thermal transport is observed in two spin systems. These findings open new avenues for designing quantum materials with controlled spin transport for thermal management and energy conversion.more » « less