skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, March 22 until 6:00 AM ET on Saturday, March 23 due to maintenance. We apologize for the inconvenience.


Title: Ultralow lattice thermal conductivity of chalcogenide perovskite CaZrSe3 contributes to high thermoelectric figure of merit
Abstract

An emerging chalcogenide perovskite, CaZrSe3, holds promise for energy conversion applications given its notable optical and electrical properties. However, knowledge of its thermal properties is extremely important, e.g. for potential thermoelectric applications, and has not been previously reported in detail. In this work, we examine and explain the lattice thermal transport mechanisms in CaZrSe3using density functional theory and Boltzmann transport calculations. We find the mean relaxation time to be extremely short corroborating an enhanced phonon–phonon scattering that annihilates phonon modes, and lowers thermal conductivity. In addition, strong anharmonicity in the perovskite crystal represented by the Grüneisen parameter predictions, and low phonon number density for the acoustic modes, results in the lattice thermal conductivity to be limited to 1.17 W m−1 K−1. The average phonon mean free path in the bulk CaZrSe3sample (N → ∞) is 138.1 nm and nanostructuring CaZrSe3sample to ~10 nm diminishes the thermal conductivity to 0.23 W m−1 K−1. We also find that p-type doping yields higher predictions of thermoelectric figure of merit than n-type doping, and values ofZT~0.95–1 are found for hole concentrations in the range 1016–1017 cm−3and temperature between 600 and 700 K.

 
more » « less
Award ID(s):
1753770
NSF-PAR ID:
10153963
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Computational Materials
Volume:
5
Issue:
1
ISSN:
2057-3960
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    PbSe is an attractive thermoelectric material due to its favorable electronic structure, high melting point, and lower cost compared to PbTe. Herein, the hitherto unexplored alloys of PbSe with NaSbSe2(NaPbmSbSem+2) are described and the most promising p‐type PbSe‐based thermoelectrics are found among them. Surprisingly, it is observed that below 500 K, NaPbmSbSem+2exhibits unorthodox semiconducting‐like electrical conductivity, despite possessing degenerate carrier densities of ≈1020cm−3. It is shown that the peculiar behavior derives from carrier scattering by the grain boundaries. It is further demonstrated that the high solubility of NaSbSe2in PbSe augments both the thermoelectric properties while maintaining a rock salt structure. Namely, density functional theory calculations and photoemission spectroscopy demonstrate that introduction of NaSbSe2lowers the energy separation between the L‐ and Σ‐valence bands and enhances the power factors under 700 K. The crystallographic disorder of Na+, Pb2+, and Sb3+moreover provides exceptionally strong point defect phonon scattering yielding low lattice thermal conductivities of 1–0.55 W m‐1K‐1between 400 and 873 K without nanostructures. As a consequence, NaPb10SbSe12achieves maximumZT≈1.4 near 900 K when optimally doped. More importantly, NaPb10SbSe12maintains highZTacross a broad temperature range, giving an estimated recordZTavgof ≈0.64 between 400 and 873 K, a significant improvement over existing p‐type PbSe thermoelectrics.

     
    more » « less
  2. Abstract

    The potential of an environmentally friendly and emerging chalcogenide perovskite CaZrSe3for thermoelectric applications is examined. The orthorhombic phase of CaZrSe3has an optimum band gap (1.35–1.40 eV) for single‐junction photovoltaic applications. The predictions reveal that CaZrSe3possesses an absorption coefficient of ≈4 × 105cm−1at photon energies of 2.5 eV with an early onset of optical absorption (≈0.2 eV) well below the optimum band gap. Seebeck coefficient,S, is inversely proportional to the carrier mobility as the calculated average effective mass for electrons is higher than for holes;p‐type doping enhances the electrical conductivity, σ. The electronic thermal conductivityκeremains low at all temperatures. The upper limit of the thermoelectric figure of merit (ZTe) attains ≈1.0 when doped at specific chemical potentials, while a high Seebeck coefficient contributes to the ZTe = 1.95 at 50 K forp‐type doping with 1018cm−3carrier concentration, demonstrating high thermoelectric efficiency.

     
    more » « less
  3. Abstract

    Sb‐doped and GeTe‐alloyed n‐type thermoelectric materials that show an excellent figure of meritZTin the intermediate temperature range (400–800 K) are reported. The synergistic effect of favorable changes to the band structure resulting in high Seebeck coefficient and enhanced phonon scattering by point defects and nanoscale precipitates resulting in reduction of thermal conductivity are demonstrated. The samples can be tuned as single‐phase solid solution (SS) or two‐phase system with nanoscale precipitates (Nano) based on the annealing processes. The GeTe alloying results in band structure modification by widening the bandgap and increasing the density‐of‐states effective mass of PbTe, resulting in significantly enhanced Seebeck coefficients. The nanoscale precipitates can improve the power factor in the low temperature range and further reduce the lattice thermal conductivity (κlat). Specifically, the Seebeck coefficient of Pb0.988Sb0.012Te–13%GeTe–Nano approaches −280 µV K−1at 673 K with a low κlatof 0.56 W m−1K−1at 573 K. Consequently, a peakZTvalue of 1.38 is achieved at 623 K. Moreover, a high averageZTavgvalue of ≈1.04 is obtained in the temperature range from 300 to 773 K for n‐type Pb0.988Sb0.012Te–13%GeTe–Nano.

     
    more » « less
  4. Abstract

    Nanosized perovskite ferroelectrics are widely employed in several electromechanical, photonics, and thermoelectric applications. Scaling of ferroelectric materials entails a severe reduction in the lattice (phonon) thermal conductivity, particularly at sub‐100 nm length scales. Such thermal conductivity reduction can be accurately predicted using the information of phonon mean free path (MFP) distribution. The current understanding of phonon MFP distribution in perovskite ferroelectrics is still inconclusive despite the critical thermal management implications. Here, high‐quality single‐crystalline barium titanate (BTO) thin films, a representative perovskite ferroelectric material, are grown at several thicknesses. Using experimental thermal conductivity measurements and first‐principles based modeling (including four‐phonon scattering), the phonon MFP distribution is determined in BTO. The simulation results agree with the measured thickness‐dependent thermal conductivity. The results show that the phonons with sub‐100 nm MFP dominate the thermal transport in BTO, and phonons with MFP exceeding 10 nm contribute ≈35% to the total thermal conductivity, in significant contrast to previously published experimental results. The experimentally validated phonon MFP distribution is consistent with the theoretical predictions of other complex crystals with strong anharmonicity. This work paves the way for thermal management in nanostructured and ferroelectric‐domain‐engineered systems for oxide perovskite‐based functional materials.

     
    more » « less
  5. Abstract

    The development of efficient thermal energy management devices such as thermoelectrics and barrier coatings often relies on compounds having low lattice thermal conductivity (κl). Here, we present the computational discovery of a large family of 628 thermodynamically stable quaternary chalcogenides, AMM′Q3(A = alkali/alkaline earth/post-transition metals; M/M′ = transition metals, lanthanides; Q = chalcogens) using high-throughput density functional theory (DFT) calculations. We validate the presence of lowκlin these materials by calculatingκlof several predicted stable compounds using the Peierls–Boltzmann transport equation. Our analysis reveals that the lowκloriginates from the presence of either a strong lattice anharmonicity that enhances the phonon-scatterings or rattler cations that lead to multiple scattering channels in their crystal structures. Our thermoelectric calculations indicate that some of the predicted semiconductors may possess high energy conversion efficiency with their figure-of-merits exceeding 1 near 600 K. Our predictions suggest experimental research opportunities in the synthesis and characterization of these stable, lowκlcompounds.

     
    more » « less