3D bioprinting improves orientation of
- Award ID(s):
- 1735968
- Publication Date:
- NSF-PAR ID:
- 10153976
- Journal Name:
- Scientific Reports
- Volume:
- 9
- Issue:
- 1
- ISSN:
- 2045-2322
- Publisher:
- Nature Publishing Group
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract There is a need for new in vitro systems that enable pharmaceutical companies to collect more physiologically-relevant information on drug response in a low-cost and high-throughput manner. For this purpose, three-dimensional (3D) spheroidal models have been established as more effective than two-dimensional models. Current commercial techniques, however, rely heavily on self-aggregation of dissociated cells and are unable to replicate key features of the native tumor microenvironment, particularly due to a lack of control over extracellular matrix components and heterogeneity in shape, size, and aggregate forming tendencies. In this study, we overcome these challenges by coupling tissue engineering toolsets with microfluidics technologies to create engineered cancer microspheres. Specifically, we employ biosynthetic hydrogels composed of conjugated poly(ethylene glycol) (PEG) and fibrinogen protein (PEG-Fb) to create engineered breast and colorectal cancer tissue microspheres for 3D culture, tumorigenic characterization, and examination of potential for high-throughput screening (HTS). MCF7 and MDA-MB-231 cell lines were used to create breast cancer microspheres and the HT29 cell line and cells from a stage II patient-derived xenograft (PDX) were encapsulated to produce colorectal cancer (CRC) microspheres. Using our previously developed microfluidic system, highly uniform cancer microspheres (intra-batch coefficient of variation (CV) ≤ 5%, inter-batch CV < 2%) withmore »
-
Among various available 3D bioprinting techniques, extrusion-based three-dimensional (3D) bioprinting allows the deposition of cell-laden bioink, ensuring predefined scaffold architecture that may offer living tissue regeneration. With a combination of unique characteristics such as biocompatibility, less cell toxicity, and high water content, natural hydrogels are a great candidate for bioink formulation for the extrusion-based 3D bioprinting process. However, due to its low mechanical integrity, hydrogel faces a common challenge in maintaining structural integrity. To tackle this challenge, the rheological properties, specifically the shear thinning behavior (reduction of viscosity with increasing the applied load/shear rate on hydrogels) of a set of hybrid hydrogels composed of cellulose-derived nanofiber (TEMPO-mediated nano-fibrillated cellulose, TO-NFC), carboxymethyl cellulose (CMC), and commonly used alginate, were explored. A total of 46 compositions were prepared using higher (0.5% and 1.0%) and lower percentages (0.005% and 0.01%) of TO-NFC, 1–4% of CMC, and 1–4% of alginate to analyze the shear thinning factors such as the values of n and K, which were determined for each composition from the flow diagram and co-related with the 3D printability. The ability to tune shear thinning factors with various ratios of a nanofiber can help achieve a 3D bio-printed scaffold with defined scaffold architecture.
-
Abstract Fibroblasts are an abundant cell type in tumor microenvironments. Activated fibroblasts, known as carcinoma‐associated fibroblasts (CAFs), interact with cancer cells through biochemical signaling and render cancer cells proliferative, invasive, and resistant to therapeutics. Targeting CAFs–cancer cells interactions offers a strategy to block cancer progression. 2D and 3D co‐cultures of human mammary fibroblasts and triple negative breast cancer (TNBC) cells are used to investigate the impact of heterotypic cellular interactions on the proliferation of matrix invasion of TNBC cells. The results show that fibroblasts secreting a chemokine, CXCL12, significantly enhance proliferation of TNBC cells expressing the chemokine receptor, CXCR4. Disrupting this interaction with a receptor antagonist normalizes cancer cell proliferation to that of a co‐culture model lacking this signaling. When co‐culture spheroids are embedded in collagen, fibroblasts producing CXCL12 promote collagen invasion of TNBC cells. Although co‐cultures containing normal fibroblasts also lead to TNBC cell spreading into the matrix, a morphological analysis of cells and inhibition of chemokine‐receptor signaling shows that this spreading is due to the incompatibility of fibroblasts and cancer cells leading to the segregation of the two cell types from the spheroid.
-
Abstract Three-dimensional (3D) bioprinting has emerged as a powerful engineering approach for various tissue engineering applications, particularly for the development of 3D cellular structures with unique mechanical and/or biological properties. For the jammed gelatin microgel-gelatin solution composite bioink, comprising a discrete phase of microgels (enzymatically gelled gelatin microgels) and a cross-linkable continuous gelatin precursor solution-based phase containing transglutaminase (TG), its rheological properties and printability change gradually due to the TG enzyme-induced cross-linking process. The objective of this study is to establish a direct mapping between the printability of the gelatin microgel-gelatin solution based cross-linkable composite bioink and the TG concentration and cross-linking time, respectively. Due to the inclusion of TG in the composite bioink, the bioink starts cross-linking once prepared and is usually prepared right before a printing process. Herein, the bioink printability is evaluated based on the three metrics: injectability, feature formability, and process-induced cell injury. In this study, the rheological properties such as the storage modulus and viscosity have been first systematically investigated and predicted at different TG concentrations and times during the cross-linking process using the first-order cross-linking kinetics model. The storage modulus and viscosity have been satisfactorily modeled as exponential functions of the TG concentration andmore »
-
The promising success of 3D printing technique with synthetic polymers like nylon, ABS, PLA and epoxy motivates the researchers to put efforts into fabricating constructs with biocompatible natural polymers. The efforts have been broadened into various fields such as bioengineering, manufacturing, and regenerative medicine. Additive biomanufacturing commonly known as 3D bioprinting shows a lot of potential in tissue engineering with those natural polymers. Some challenges such as achieving printability, maintaining geometry in post printing stage, comforting encapsulated cells, and ensuring high proliferation are to be resolved to turn this process into a successful trial. Appropriate design of experiments with a detail rheological investigation can identify useful mechanical properties which is directly related to shape fidelity of 3D bio-printed scaffolds. As candidate natural polymers, Alginate-low viscous Carboxymethyl Cellulose (CMC) was used restricting the solid content 8% (w/v). Various rheological tests, such as the Steady Rate Sweep Test, Thixotropic (3ITT), Amplitude, and Frequency test were performed. The result indicated that rheological properties are CMC dependent. Printability and shape fidelity were analyzed of the filaments and scaffolds fabricated with all the combinations. The rheological results were co-related with the printability and shape fidelity result.