skip to main content


Search for: All records

Award ID contains: 1735968

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Objective

    The objective of the present study was to enhance the bioavailability of cannabidiol (CBD) using 3D Digital Light Processing (DLP)-printed microneedle (MN) transdermal drug delivery system.

    Methods

    CBD MN patch was fabricated and optimized using 3D DLP printing using CBD (8% w/v), Lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) (0.49% w/v), distilled water (20% w/v), and poly (ethylene glycol) dimethacrylate 550 (PEGDAMA 550) (up to 100% w/v). CBD MNs were characterized for their morphology, mechanical strength, in vitro release study, ex vivo permeation study, and in vivo pharmacokinetic (PK) profile.

    Key findings

    Microscopic images showed that sharp CBD MNs with a height of ~800 μm, base diameter of ~250 μm, and tip with a radius of curvature (RoC) of ~15 μm were successfully printed using optimized printing parameters. Mechanical strength studies showed no significant deformation in the morphology of CBD MNs even after applying 0.5N/needle force. Ex vivo permeation study showed significant (P < .0001) permeation of CBD in the receiving media as compared to CBD patch (control). In vivo PK study showed significantly (P < .05) enhanced bioavailability in the case of CBD MN patch as compared to CBD subcutaneous inj. (control).

    Conclusion

    Overall, systemic absorption of CBD was significantly enhanced using 3D-printed MN drug delivery system.

     
    more » « less
    Free, publicly-accessible full text available April 24, 2025
  2. Abstract

    Direct ink write deposition facilitates line‐by‐line extrusion of inks spanning wide viscoelastic ranges. Following deposition, post processing technologies permit tuning of the extrudate's material property characteristics—ultraviolet (UV) irradiation, facilitating the photopolymerization of UV‐reactive catalyst solutions, permits targeted modification of the extrudate's microstructure and in situ tuning of extrudate macrostructure. This report analyzes the morphological, rheological, and microstructural property relationships governing the printability, and processivity, of extruded UV‐curable resin inks for delineation of sufficiency and optimization of ink printability utilizing direct ink write technologies. A design‐of‐experiments approach is implemented to quantify significance regarding an extrudate's dimensional response to extrusion parameter variation and in situ processing parameters, identifying proportionally of nozzle velocity, nozzle height, and UV irradiation exposure with extrudate aspect ratio, reflected by respective maximum extrudate aspect ratio increases of 158% and 109%, regarding 121 and 123K resin inks. Finally, the relationship between extrudate morphology and microstructure variation was assessed via dielectric cure monitoring, whereby an extrudate's ion viscosity was calculated in relation to its rheological modulus, reflecting the relationship between an extrudate's morphology, rheological response, and printability, regarding its microstructural variation.

     
    more » « less
  3. Abstract

    Dynamic bond exchanging vitrimers have emerged recently due to their malleability, self‐heal ability, recyclability, and mechanical stability. Likewise, 3D printing is consciously introduced at different platforms for ease of fabrication, high throughput, cost‐effectiveness, and waste reduction. These two distinctive techniques have recently made their consensus performance, resulting from a phenomenal change in the printing field. Conventionally, thermoplastic inks have been primarily used in 3D printing, owing to their effortless processability. At the same time, thermosets were utilized for their superior mechanical strength. However, these two essential properties have been required to be presented in the printed material. In that scenario, thermoset vitrimer materials have been introduced in 3D printing, where malleability and mechanical stability have been observed in the same material. Thus, this article details the recent vitrimer material included with the different 3D printing system systems with their reported results to understand and make them widespread. Eventually, the outlook and perspectives could be helpful to understand and enhance this specific field.

     
    more » « less
  4. Abstract

    3D bioprinting improves orientation ofin vitrotumor models by offering layer by layer positioning of cancer cells and cancer associated fibroblasts (CAFs) which can replicate tumor microenvironment. Aim of this study was to develop a sodium alginate -gelatin (SA-GL) hydrogel by optimizing rheological parameters to print non-small cell lung cancer (NSCLC) patient derived xenograft (PDX) cells and lung CAFs co-cultures. SA-GL hydrogels were prepared, and rheological properties were evaluated. Both the cells were mixed with the hydrogel and printed using INKREDIBLE bioprinter. Hydrogels prepared with 3.25% and 3.5% (w/v) SA and 4% (w/v) GL showed higher printability and cell viability. A significant decline in viscosity with shear rate was observed in these hydrogels suggesting the shear thinning property of hydrogels. Spheroid size distribution after 15 days was in the diameter range of 50–1100 µm. Up-regulation of vimentin, α-SMA and loss of E-cadherin in co-culture spheroids confirmed cellular crosstalk. This study demonstrates that rheological optimization of SA-GL hydrogel enhances printability and viability of NSCLC PDX and CAF co-culture which allows 3D co-culture spheroid formation within the printed scaffold. Therefore, this model can be used for studying high throughput drug screening and other pre-clinical applications.

     
    more » « less
  5. Free, publicly-accessible full text available June 1, 2025
  6. Using a single rotating magnetic field, RBC biohybrid micromotors can be controlled to achieve propulsionviaswimming and rolling modes. The propulsion mechanism, directional control, and behavior in different fluids is investigated.

     
    more » « less
  7. “Yan Li” was not included as an author in the original publication [...]

     
    more » « less