skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Trait-Based Comparison of Coral and Sponge Microbiomes
Abstract Corals and sponges harbor diverse microbial communities that are integral to the functioning of the host. While the taxonomic diversity of their microbiomes has been well-established for corals and sponges, their functional roles are less well-understood. It is unclear if the similarities of symbiosis in an invertebrate host would result in functionally similar microbiomes, or if differences in host phylogeny and environmentally driven microhabitats within each host would shape functionally distinct communities. Here we addressed this question, using metatranscriptomic and 16S rRNA gene profiling techniques to compare the microbiomes of two host organisms from different phyla. Our results indicate functional similarity in carbon, nitrogen, and sulfur assimilation, and aerobic nitrogen cycling. Additionally, there were few statistical differences in pathway coverage or abundance between the two hosts. For example, we observed higher coverage of phosphonate and siderophore metabolic pathways in the star coral,Montastraea cavernosa, while there was higher coverage of chloroalkane metabolism in the giant barrel sponge,Xestospongia muta. Higher abundance of genes associated with carbon fixation pathways was also observed inM. cavernosa, while inX. mutathere was higher abundance of fatty acid metabolic pathways. Metagenomic predictions based on 16S rRNA gene profiling analysis were similar, and there was high correlation between the metatranscriptome and metagenome predictions for both hosts. Our results highlight several metabolic pathways that exhibit functional similarity in these coral and sponge microbiomes despite the taxonomic differences between the two microbiomes, as well as potential specialization of some microbially based metabolism within each host.  more » « less
Award ID(s):
1638296
PAR ID:
10153990
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
10
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The microbiomes of tropical corals are actively studied using 16S rRNA gene amplicons to understand microbial roles in coral health, metabolism, and disease resistance. However, due to the prokaryotic origins of mitochondria, primers targeting bacterial and archaeal 16S rRNA genes may also amplify homologous 12S mitochondrial rRNA genes from the host coral, associated microbial eukaryotes, and encrusting organisms. Standard microbial bioinformatics pipelines attempt to identify and remove these sequences by comparing them to reference taxonomies. However, commonly used tools have severely under-annotated mitochondrial sequences in 1440 coral microbiomes from the Global Coral Microbiome Project, preventing annotation of over 95% of reads in some samples. This issue persists when using Greengenes or SILVA prokaryotic reference taxonomies, and in other hosts, including 16S studies of vertebrates, and of marine sponges. Worse, mitochondrial under-annotation varies between coral families and across coral compartments, biasing comparisons of  - and  -diversity. By supplementing existing reference taxonomies with over 3000 animal mitochondrial rRNA gene sequences, we resolved roughly 97% of unique unclassified sequences as mitochondrial. These additional sequences did not cause a false elevation in mitochondrial annotations in mock communities with known compositions. We recommend using these extended taxonomies for coral microbiome analysis and whenever eukaryotic contamination may be a concern. 
    more » « less
  2. null (Ed.)
    Freshwater mussels perform essential ecosystem functions, yet we have no information on how their microbiomes fluctuate over time. In this study, we examined temporal variation in the microbiome of six mussel species (Lampsilis ornata, Obovaria unicolor, Elliptio arca, Fusconaia cerina, Cyclonaias asperata, and Tritogonia verrucosa) sampled from the same river in 2016 and 2019. We examined the taxonomic, phylogenetic, and inferred functional (from 16S rRNA sequences) facets of their microbiome diversity. Significant differences between the two years were identified in five of the six species sampled. However, not all species that exhibited a temporally variable microbiome were functionally distinct across years, indicating functional redundancy within the mussel gut microbiome. Inferred biosynthesis pathways showed temporal variation in pathways involved in degradation, while pathways involved in cellular metabolism were stable. There was no evidence for phylosymbiosis across any facet of microbiome biodiversity. These results indicate that temporal variation is an important factor in the assembly of the gut microbiomes of freshwater mussels and provides further support that the mussel gut microbiome is involved in host development and activity. 
    more » « less
  3. Abstract Candidatus Poribacteria is a little-known bacterial phylum, previously characterized by partial genomes from a single sponge host, but never isolated in culture. We have reconstructed multiple genome sequences from four different sponge genera and compared them to recently reported, uncharacterized Poribacteria genomes from the open ocean, discovering shared and unique functional characteristics. Two distinct, habitat-linked taxonomic lineages were identified, designated Entoporibacteria (sponge-associated) and Pelagiporibacteria (free-living). These lineages differed in flagellar motility and chemotaxis genes unique to Pelagiporibacteria, and highly expanded families of restriction endonucleases, DNA methylases, transposases, CRISPR repeats, and toxin–antitoxin gene pairs in Entoporibacteria. Both lineages shared pathways for facultative anaerobic metabolism, denitrification, fermentation, organosulfur compound utilization, type IV pili, cellulosomes, and bacterial proteosomes. Unexpectedly, many features characteristic of eukaryotic host association were also shared, including genes encoding the synthesis of eukaryotic-like cell adhesion molecules, extracellular matrix digestive enzymes, phosphoinositol-linked membrane glycolipids, and exopolysaccharide capsules. Complete Poribacteria 16S rRNA gene sequences were found to contain multiple mismatches to “universal” 16S rRNA gene primer sets, substantiating concerns about potential amplification failures in previous studies. A newly designed primer set corrects these mismatches, enabling more accurate assessment of Poribacteria abundance in diverse marine habitats where it may have previously been overlooked. 
    more » « less
  4. Biodiversity monitoring based on DNA metabarcoding depends on primer performance. Here, we develop a new metabarcoding primer pair that targets a ~ 318 bp fragment of the 28S rRNA gene. We validate the primer pair in assessing sponges, a notoriously challenging group for coral reef metabarcoding studies, by using mock and natural complex reef communities to examine its performance in species detection, amplification efficiency, and quantitative potential. Mock community experiments revealed a high number of sponge species (n = 94) spanning a broad taxonomic scope (15 orders), limited taxon-specific primer biases (only a single species exceeded a two-fold deviation from the expected number of reads), and its suitability for quantitative metabarcoding – there was a significant relationship between read abundance and visual percent coverage of sponge taxa (R = 0.76). In the natural complex coral reef community experiments, commonly used COI metabarcoding primers detected only 30.9% of sponge species, while the new 28S primer increased detection to 79.4%. These new 28S primers detect a broader taxonomic array of species across phyla and classes within the complex cryptobiome of coral reef communities than the Leray-Geller COI primers. As biodiversity assessments using metabarcoding tools are increasingly being leveraged for environmental monitoring and guide policymaking, these new 28S rRNA primers can improve biodiversity assessments for complex ecological coral reef communities. 
    more » « less
  5. Abstract Sponges occur across diverse marine biomes and host internal microbial communities that can provide critical ecological functions. While strong patterns of host specificity have been observed consistently in sponge microbiomes, the precise ecological relationships between hosts and their symbiotic microbial communities remain to be fully delineated. In the current study, we investigate the relative roles of host population genetics and biogeography in structuring the microbial communities hosted by the excavating spongeCliona delitrix. A total of 53 samples, previously used to demarcate the population genetic structure ofC. delitrix,were selected from two locations in the Caribbean Sea and from eight locations across the reefs of Florida and the Bahamas. Microbial community diversity and composition were measured using Illumina‐based high‐throughput sequencing of the 16S rRNA V4 region and related to host population structure and geographic distribution. Most operational taxonomic units (OTUs) specific toCliona delitrixmicrobiomes were rare, while other OTUs were shared with congeneric hosts. Across a large regional scale (>1,000 km), geographic distance was associated with considerable variability of the sponge microbiome, suggesting a distance–decay relationship, but little impact over smaller spatial scales (<300 km) was observed. Host population structure had a moderate effect on the structure of these microbial communities, regardless of geographic distance. These results support the interplay between geographic, environmental, and host factors as forces determining the community structure of microbiomes associated withC. delitrix. Moreover, these data suggest that the mechanisms of host regulation can be observed at the population genetic scale, prior to the onset of speciation. 
    more » « less