In this work, a knee sleeve is presented for application in physical therapy applications relating to knee rehabilitation. The device is instrumented with sixteen piezoresistive sensors to measure knee angles during exercise, and can support at-home rehabilitation methods. The development of the device is presented. Testing was performed on eighteen subjects, and knee angles were predicted using a machine learning regressor. Subject-specific and device-specific models are analyzed and presented. Subject-specific models average root mean square errors of 7.6 and 1.8 degrees for flexion/extension and internal/external rotation, respectively. Device-specific models average root mean square errors of 12.6 and 3.5 degrees for flexion/extension and internal/external rotation, respectively. The device presented in this work proved to be a repeatable, reusable, low-cost device that can adequately model the knee’s flexion/extension and internal/external rotation angles for rehabilitation purposes.
more »
« less
A 3D printing approach toward targeted intervention in telerehabilitation
Abstract Neuromuscular impairment requires adherence to a rehabilitation regimen for maximum recovery of motor function. Consumer-grade game controllers have emerged as a viable means to relay supervised physical therapy to patients’ homes, thereby increasing their accessibility to healthcare. These controllers allow patients to perform exercise frequently and improve their rehabilitation outcomes. However, the non-universal design of game controllers targets healthy people and does not always accommodate people with disability. Consequently, many patients experience considerable difficulty assuming certain hand postures and performing the prescribed exercise correctly. Here, we explore the feasibility of improving rehabilitation outcomes through a 3D printing approach that enhances off-the-shelf game controllers in home therapy. Specifically, a custom attachment was 3D printed for a commercial haptic device that mediates fine motor rehabilitation. In an experimental study, 25 healthy subjects performed a navigation task, with the retrofit attachment and without it, while simulating disability of the upper limb. When using the attachment, subjects extended their wrist range of motion, yet maintained their level of compensation. The subjects also showed higher motivation to repeat the exercise with the enhanced device. The results bring forward evidence for the potential of this approach in transforming game controllers toward targeted interventions in home therapy.
more »
« less
- Award ID(s):
- 1604355
- PAR ID:
- 10154002
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
BackgroundStroke therapy is essential to reduce impairments and improve motor movements by engaging autogenous neuroplasticity. Traditionally, stroke rehabilitation occurs in inpatient and outpatient rehabilitation facilities. However, recent literature increasingly explores moving the recovery process into the home and integrating technology-based interventions. This study advances this goal by promoting in-home, autonomous recovery for patients who experienced a stroke through robotics-assisted rehabilitation and classifying stroke residual severity using machine learning methods. ObjectiveOur main objective is to use kinematics data collected during in-home, self-guided therapy sessions to develop supervised machine learning methods, to address a clinician’s autonomous classification of stroke residual severity–labeled data toward improving in-home, robotics-assisted stroke rehabilitation. MethodsIn total, 33 patients who experienced a stroke participated in in-home therapy sessions using Motus Nova robotics rehabilitation technology to capture upper and lower body motion. During each therapy session, the Motus Hand and Motus Foot devices collected movement data, assistance data, and activity-specific data. We then synthesized, processed, and summarized these data. Next, the therapy session data were paired with clinician-informed, discrete stroke residual severity labels: “no range of motion (ROM),” “low ROM,” and “high ROM.” Afterward, an 80%:20% split was performed to divide the dataset into a training set and a holdout test set. We used 4 machine learning algorithms to classify stroke residual severity: light gradient boosting (LGB), extra trees classifier, deep feed-forward neural network, and classical logistic regression. We selected models based on 10-fold cross-validation and measured their performance on a holdout test dataset using F1-score to identify which model maximizes stroke residual severity classification accuracy. ResultsWe demonstrated that the LGB method provides the most reliable autonomous detection of stroke severity. The trained model is a consensus model that consists of 139 decision trees with up to 115 leaves each. This LGB model boasts a 96.70% F1-score compared to logistic regression (55.82%), extra trees classifier (94.81%), and deep feed-forward neural network (70.11%). ConclusionsWe showed how objectively measured rehabilitation training paired with machine learning methods can be used to identify the residual stroke severity class, with efforts to enhance in-home self-guided, individualized stroke rehabilitation. The model we trained relies only on session summary statistics, meaning it can potentially be integrated into similar settings for real-time classification, such as outpatient rehabilitation facilities.more » « less
-
Proprioception or body awareness is an essential sense that aids in the neural control of movement. Proprioceptive impairments are commonly found in people with neurological conditions such as stroke and Parkinson’s disease. Such impairments are known to impact the patient’s quality of life. Robot-aided proprioceptive training has been proposed and tested to improve sensorimotor performance. However, such robot-aided exercises are implemented similar to many physical rehabilitation exercises, requiring task-specific and repetitive movements from patients. Monotonous nature of such repetitive exercises can result in reduced patient motivation, thereby, impacting treatment adherence and therapy gains. Gamification of exercises can make physical rehabilitation more engaging and rewarding. In this work, we discuss our ongoing efforts to develop a game that can accompany a robot-aided wrist proprioceptive training exercise.more » « less
-
Physical therapy is often essential for complete recovery after injury. However, a significant population of patients fail to adhere to prescribed exercise regimens. Lack of motivation and inconsistent in-person visits to physical therapy are major contributing factors to suboptimal exercise adherence, slowing the recovery process. With the advancement of virtual reality (VR), researchers have developed remote virtual rehabilitation systems with sensors such as inertial measurement units. A functional garment with an integrated wearable sensor can also be used for real-time sensory feedback in VR-based therapeutic exercise and offers affordable remote rehabilitation to patients. Sensors integrated into wearable garments offer the potential for a quantitative range of motion measurements during VR rehabilitation. In this research, we developed and validated a carbon nanocomposite-coated knit fabric-based sensor worn on a compression sleeve that can be integrated with upper-extremity virtual rehabilitation systems. The sensor was created by coating a commercially available weft knitted fabric consisting of polyester, nylon, and elastane fibers. A thin carbon nanotube composite coating applied to the fibers makes the fabric electrically conductive and functions as a piezoresistive sensor. The nanocomposite sensor, which is soft to the touch and breathable, demonstrated high sensitivity to stretching deformations, with an average gauge factor of ~35 in the warp direction of the fabric sensor. Multiple tests are performed with a Kinarm end point robot to validate the sensor for repeatable response with a change in elbow joint angle. A task was also created in a VR environment and replicated by the Kinarm. The wearable sensor can measure the change in elbow angle with more than 90% accuracy while performing these tasks, and the sensor shows a proportional resistance change with varying joint angles while performing different exercises. The potential use of wearable sensors in at-home virtual therapy/exercise was demonstrated using a Meta Quest 2 VR system with a virtual exercise program to show the potential for at-home measurements.more » « less
-
Smart patient rooms are arriving; however, their value has yet to be explored. We interviewed 20 patients in a rehabilitation hospital, which has patient rooms equipped with off-the-shelf smart home technologies, so the entertainment and environment are digitally controllable. This novel implementation supports varying control abilities through touchscreen, voice command, and accessibility controllers. The smart rooms and controls are potentially transformative for patients with reduced motor function, helping them regain lost independence and control of their surroundings. Through semi-structured interviews, we explore how smart home technology deployed in patient rooms: interacts with patients’ needs, presents new challenges, and fits into the hospital context. We identify a range of considerations that inform how hospitals can integrate smart technology into their environment, including technology design considerations and adjustments to how hospital staff supports its use. These results take an important step toward understanding and improving the value of smart patient rooms.more » « less
An official website of the United States government
