Abstract There is an intricate relationship between the organization of large-scale magnetic fields by a stellar dynamo and the rate of angular momentum loss due to magnetized stellar winds. An essential ingredient for the operation of a large-scale dynamo is the Coriolis force, which imprints organizing flows on the global convective patterns and inhibits the complete cancellation of bipolar magnetic regions. Consequently, it is natural to expect a rotational threshold for large-scale dynamo action and for the efficient angular momentum loss that it mediates through magnetic braking. Here we present new observational constraints on magnetic braking for an evolutionary sequence of six early K-type stars. To determine the wind braking torque for each of our targets, we combine spectropolarimetric constraints on the large-scale magnetic field, Lyαor X-ray constraints on the mass-loss rate, as well as uniform estimates of the stellar rotation period, mass, and radius. As identified previously from similar observations of hotter stars, we find that the wind braking torque decreases abruptly by more than an order of magnitude at a critical value of the stellar Rossby number. Given that all of the stars in our sample exhibit clear activity cycles, we suggest that weakened magnetic braking may coincide with the operation of a subcritical stellar dynamo.
more »
« less
Nanoscale transfer of angular momentum mediated by the Casimir torque
Abstract Casimir interactions play an important role in the dynamics of nanoscale objects. Here, we investigate the noncontact transfer of angular momentum at the nanoscale through the analysis of the Casimir torque acting on a chain of rotating nanoparticles. We show that this interaction, which arises from the vacuum and thermal fluctuations of the electromagnetic field, enables an efficient transfer of angular momentum between the elements of the chain. Working within the framework of fluctuational electrodynamics, we derive analytical expressions for the Casimir torque acting on each nanoparticle in the chain, which we use to study the synchronization of chains with different geometries and to predict unexpected dynamics, including a “rattleback”-like behavior. Our results provide insights into the Casimir torque and how it can be exploited to achieve efficient noncontact transfer of angular momentum at the nanoscale, and therefore have important implications for the control and manipulation of nanomechanical devices.
more »
« less
- Award ID(s):
- 1710697
- PAR ID:
- 10154154
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Communications Physics
- Volume:
- 2
- Issue:
- 1
- ISSN:
- 2399-3650
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Casimir force acts on nearby surfaces due to zero-point fluctuations of the quantum electromagnetic field. In the nonretarded limit, the interaction is also known as the van der Waals force. When the electromagnetic response of the surfaces is anisotropic, a torque may act on the surfaces. Here, we review the literature and recent developments on the Casimir torque. The theory of the Casimir torque is discussed in an explicit example for uniaxial birefringent plates. Recent theoretical predictions for the Casimir torque in various configurations are presented. A particular emphasis is made on experimental setups for measuring the Casimir torque.more » « less
-
Abstract The emerging field of nanomagnonics utilizes high‐frequency waves of magnetization—spin waves—for the transmission and processing of information on the nanoscale. The advent of spin‐transfer torque has spurred significant advances in nanomagnonics, by enabling highly efficient local spin wave generation in magnonic nanodevices. Furthermore, the recent emergence of spin‐orbitronics, which utilizes spin–orbit interaction as the source of spin torque, has provided a unique ability to exert spin torque over spatially extended areas of magnonic structures, enabling enhanced spin wave transmission. Here, it is experimentally demonstrated that these advances can be efficiently combined. The same spin–orbit torque mechanism is utilized for the generation of propagating spin waves, and for the long‐range enhancement of their propagation, in a single integrated nanomagnonic device. The demonstrated system exhibits a controllable directional asymmetry of spin wave emission, which is highly beneficial for applications in nonreciprocal magnonic logic and neuromorphic computing.more » « less
-
We investigate the dynamics of a pair of rigid rotating helices in a viscous fluid, as a model for bacterial flagellar bundle and a prototype of microfluidic pumps. Combining experiments with hydrodynamic modelling, we examine how spacing and phase difference between the two helices affect their torque, flow field and fluid transport capacity at low Reynolds numbers. Hydrodynamic coupling reduces the torque when the helices rotate in phase at constant angular speed, but increases the torque when they rotate out of phase. We identify a critical phase difference, at which the hydrodynamic coupling vanishes despite the close spacing between the helices. A simple model, based on the flow characteristics and positioning of a single helix, is constructed, which quantitatively predicts the torque of the helical pair in both unbounded and confined systems. Finally, we show the influence of spacing and phase difference on the axial flux and the pump efficiency of the helices. Our findings shed light on the function of bacterial flagella and provide design principles for efficient low-Reynolds-number pumps.more » « less
-
Klimchitskaya, Galina L.; Mostepanenko, Vladimir M. (Ed.)Using the formulation of the electromagnetic Green’s function of a perfectly conducting cone in terms of analytically continued angular momentum, we compute the Casimir–Polder interaction energy of a cone with a polarizable particle. We introduce this formalism by first reviewing the analogous approach for a perfectly conducting wedge, and then demonstrate the calculation through numerical evaluation of the resulting integrals.more » « less
An official website of the United States government
