skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Electromagnetic Casimir–Polder Interaction for a Conducting Cone
Using the formulation of the electromagnetic Green’s function of a perfectly conducting cone in terms of analytically continued angular momentum, we compute the Casimir–Polder interaction energy of a cone with a polarizable particle. We introduce this formalism by first reviewing the analogous approach for a perfectly conducting wedge, and then demonstrate the calculation through numerical evaluation of the resulting integrals.  more » « less
Award ID(s):
2209582
PAR ID:
10504030
Author(s) / Creator(s):
Editor(s):
Klimchitskaya, Galina L.; Mostepanenko, Vladimir M.
Publisher / Repository:
MDPI Physics
Date Published:
Journal Name:
Physics
Volume:
5
Issue:
4
ISSN:
2624-8174
Page Range / eLocation ID:
1003 to 1012
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We formulate a kinetic theory of quantum information scrambling in the context of a paradigmatic model of interacting electrons in the vicinity of a superconducting phase transition. We carefully derive a set of coupled partial differential equations that effectively govern the dynamics of information spreading in generic dimensions. Their solutions show that scrambling propagates at the maximal speed set by the Fermi velocity. At early times, we find exponential growth at a rate set by the inelastic scattering. At late times, we find that scrambling is governed by shock-wave dynamics with traveling waves exhibiting a discontinuity at the boundary of the light cone. Notably, we find perfectly causal dynamics where the solutions do not spill outside of the light cone. 
    more » « less
  2. null (Ed.)
    It has been recognized for some time that, even for perfect conductors, the interaction Casimir entropy, due to quantum/thermal fluctuations, can be negative. This result was not considered problematic because it was thought that the self-entropies of the bodies would cancel this negative interaction entropy, yielding a total entropy that was positive. In fact, this cancellation seems not to occur. The positive self-entropy of a perfectly conducting sphere does indeed just cancel the negative interaction entropy of a system consisting of a perfectly conducting sphere and plate, but a model with weaker coupling in general possesses a regime where negative self-entropy appears. The physical meaning of this surprising result remains obscure. In this paper, we re-examine these issues, using improved physical and mathematical techniques, partly based on the Abel–Plana formula, and present numerical results for arbitrary temperatures and couplings, which exhibit the same remarkable features. 
    more » « less
  3. Abstract The stability of cylindrical coaxial fibers made from soft elastomeric materials is studied for electro-static loadings. The general configuration considered is a three-component axisymmetric fiber having a conducting core bonded to a dielectric annulus in turn bonded to an outer conducting annular sheath. A voltage difference between the conducting components is imposed. The stresses and actuated elongation in the perfectly concentric fiber are analyzed, and the critical voltage at which stability of the concentric configuration is lost is determined via solution of the non-axisymmetric bifurcation problem. The role of the geometry and moduli contrasts among the components is revealed, and the sub-class of two-component fibers is also analyzed. The idealized problem of a planar layer with conducting surfaces that is bonded to a stiff substrate on one surface and free on the other exposes the importance of short wavelength surface instability modes. 
    more » « less
  4. Abstract This study presents an approach for structural health monitoring (SHM) of remote and hazardous structures using unpiloted aerial vehicles (UAVs). The method focuses on overcoming the challenges associated with traditional sensor deployment techniques, which are often costly and risky due to the decaying nature of the targeted structures. Utilizing a multi-rotor UAV platform, a streaming camera is integrated into a recovery cone to aid in visual alignment during deployment and retrieval providing a safe and cost-effective means of sensor delivery. The paper covers the design of a video-broadcasting deployment system with integrated electropermanent magnets (EPMs), housed in a 3D-printed recovery cone, supplemented by redundancy measures to enhance safety and reliability. This proposed system significantly improves the user’s spatial awareness and aids in precise sensor package alignment, facilitated by multiple camera views providing a dual purpose of conducting visual inspection in addition to aiding in sensor delivery. The experimental analysis presented in this study validates the system’s effectiveness, demonstrating the utility of camera-aided sensor delivery for rapid SHM applications. Navigation challenges due to proximity to metal structures and the difficulties associated with signal strength and reflections are also reported. The contribution of this work is a methodology for aerial sensor deployment and retrieval using a lightweight 3D-printed recovery cone with integrated cameras for navigation and sensor alignment. 
    more » « less
  5. In this paper, a symmetry-adapted method is applied to examine the influence of deformation and defects on the electronic structure and band structure in carbon nanotubes. First, the symmetry-adapted approach is used to develop the analog of Bloch waves. Building on this, the technique of perfectly matched layers is applied to develop a method to truncate the computational domain of electronic structure calculations without spurious size effects. This provides an efficient and accurate numerical approach to compute the electronic structure and electromechanics of defects in nanotubes. The computational method is applied to study the effect of twist, stretch, and bending, with and without various types of defects, on the band structure of nanotubes. Specifically, the effect of stretch and twist on band structure in defect-free conducting and semiconducting nanotubes is examined, and the interaction with vacancy defects is elucidated. Next, the effect of localized bending or kinking on the electronic structure is studied. Finally, the paper examines the effect of 5–8–5 Stone–Wales defects. In all of these settings, the perfectly matched layer method enables the calculation of localized non-propagating defect modes with energies in the bandgap of the defect-free nanotube. 
    more » « less