Abstract Recent advancements in the field of two-dimensional (2D) materials have led to the discovery of a wide range of 2D materials with intriguing properties. Atomistic-scale simulation methods have played a key role in these discoveries. In this review, we provide an overview of the recent progress in ReaxFF force field developments and applications in modeling the following layered and nonlayered 2D materials: graphene, transition metal dichalcogenides, MXenes, hexagonal boron nitrides, groups III-, IV- and V-elemental materials, as well as the mixed dimensional van der Waals heterostructures. We further discuss knowledge gaps and challenges associated with synthesis and characterization of 2D materials. We close this review with an outlook addressing the challenges as well as plans regarding ReaxFF development and possible large-scale simulations, which should be helpful to guide experimental studies in a discovery of new materials and devices.
more »
« less
Multiscale computational understanding and growth of 2D materials: a review
Abstract The successful discovery and isolation of graphene in 2004, and the subsequent synthesis of layered semiconductors and heterostructures beyond graphene have led to the exploding field of two-dimensional (2D) materials that explore their growth, new atomic-scale physics, and potential device applications. This review aims to provide an overview of theoretical, computational, and machine learning methods and tools at multiple length and time scales, and discuss how they can be utilized to assist/guide the design and synthesis of 2D materials beyond graphene. We focus on three methods at different length and time scales as follows: (i) nanoscale atomistic simulations including density functional theory (DFT) calculations and molecular dynamics simulations employing empirical and reactive interatomic potentials; (ii) mesoscale methods such as phase-field method; and (iii) macroscale continuum approaches by coupling thermal and chemical transport equations. We discuss how machine learning can be combined with computation and experiments to understand the correlations between structures and properties of 2D materials, and to guide the discovery of new 2D materials. We will also provide an outlook for the applications of computational approaches to 2D materials synthesis and growth in general.
more »
« less
- Award ID(s):
- 2042683
- PAR ID:
- 10154284
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- npj Computational Materials
- Volume:
- 6
- Issue:
- 1
- ISSN:
- 2057-3960
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Reproducible wafer-scale growth of two-dimensional (2D) materials using the Chemical Vapor Deposition (CVD) process with precise control over their properties is challenging due to a lack of understanding of the growth mechanisms spanning over several length scales and sensitivity of the synthesis to subtle changes in growth conditions. A multiscale computational framework coupling Computational Fluid Dynamics (CFD), Phase-Field (PF), and reactive Molecular Dynamics (MD) was developed – called the CPM model – and experimentally verified. Correlation between theoretical predictions and thorough experimental measurements for a Metal-Organic CVD (MOCVD)-grown WSe2model material revealed the full power of this computational approach. Large-area uniform 2D materials are synthesized via MOCVD, guided by computational analyses. The developed computational framework provides the foundation for guiding the synthesis of wafer-scale 2D materials with precise control over the coverage, morphology, and properties, a critical capability for fabricating electronic, optoelectronic, and quantum computing devices.more » « less
-
Abstract Two-dimensional (2D) ferroelectric and magnetic van der Waals materials are emerging platforms for the discovery of novel cooperative quantum phenomena and development of energy-efficient logic and memory applications as well as neuromorphic and topological computing. This review presents a comprehensive survey of the rapidly growing 2D ferroic family from the synthesis perspective, including brief introductions to the top-down and bottom-up approaches for fabricating 2D ferroic flakes, thin films, and heterostructures as well as the important characterization techniques for assessing the sample properties. We also discuss the key challenges and future directions in the field, including scalable growth, property control, sample stability, and integration with other functional materials.more » « less
-
Abstract Machine learning (ML) has become a central focus of the computational chemistry community. I will first discuss my personal history in the field. Then I will provide a broader view of how this resurgence in ML interest echoes and advances upon earlier efforts. Although numerous changes have brought about this latest wave, one of the most significant is the increased accuracy and efficiency of low‐cost methods (e. g., density functional theory or DFT) that have made it possible to generate large data sets for ML models. ML has also been used to bypass, guide, or improve DFT. The field of computational chemistry thus finds itself at a crossroads as ML both augments and supersedes traditional efforts. I will present what I believe the role of the computational chemist will be in this evolving landscape, with specific focus on my experience in the development of autonomous workflows in computational materials discovery for open‐shell transition‐metal chemistry.more » « less
-
Abstract The budding field of materials informatics has coincided with a shift towards artificial intelligence to discover new solid-state compounds. The steady expansion of repositories for crystallographic and computational data has set the stage for developing data-driven models capable of predicting a bevy of physical properties. Machine learning methods, in particular, have already shown the ability to identify materials with near ideal properties for energy-related applications by screening crystal structure databases. However, examples of the data-guided discovery of entirely new, never-before-reported compounds remain limited. The critical step for determining if an unknown compound is synthetically accessible is obtaining the formation energy and constructing the associated convex hull. Fortunately, this information has become widely available through density functional theory (DFT) data repositories to the point that they can be used to develop machine learning models. In this Review, we discuss the specific design choices for developing a machine learning model capable of predicting formation energy, including the thermodynamic quantities governing material stability. We investigate several models presented in the literature that cover various possible architectures and feature sets and find that they have succeeded in uncovering new DFT-stable compounds and directing materials synthesis. To expand access to machine learning models for synthetic solid-state chemists, we additionally presentMatLearn. This web-based application is intended to guide the exploration of a composition diagram towards regions likely to contain thermodynamically accessible inorganic compounds. Finally, we discuss the future of machine-learned formation energy and highlight the opportunities for improved predictive power toward the synthetic realization of new energy-related materials.more » « less
An official website of the United States government
