skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modeling and simulations for 2D materials: a ReaxFF perspective
Abstract Recent advancements in the field of two-dimensional (2D) materials have led to the discovery of a wide range of 2D materials with intriguing properties. Atomistic-scale simulation methods have played a key role in these discoveries. In this review, we provide an overview of the recent progress in ReaxFF force field developments and applications in modeling the following layered and nonlayered 2D materials: graphene, transition metal dichalcogenides, MXenes, hexagonal boron nitrides, groups III-, IV- and V-elemental materials, as well as the mixed dimensional van der Waals heterostructures. We further discuss knowledge gaps and challenges associated with synthesis and characterization of 2D materials. We close this review with an outlook addressing the challenges as well as plans regarding ReaxFF development and possible large-scale simulations, which should be helpful to guide experimental studies in a discovery of new materials and devices.  more » « less
Award ID(s):
1808900 2039351 1539916
PAR ID:
10422508
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
2D Materials
Volume:
10
Issue:
3
ISSN:
2053-1583
Page Range / eLocation ID:
Article No. 032002
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Two-dimensional (2D) ferroelectric and magnetic van der Waals materials are emerging platforms for the discovery of novel cooperative quantum phenomena and development of energy-efficient logic and memory applications as well as neuromorphic and topological computing. This review presents a comprehensive survey of the rapidly growing 2D ferroic family from the synthesis perspective, including brief introductions to the top-down and bottom-up approaches for fabricating 2D ferroic flakes, thin films, and heterostructures as well as the important characterization techniques for assessing the sample properties. We also discuss the key challenges and future directions in the field, including scalable growth, property control, sample stability, and integration with other functional materials. 
    more » « less
  2. Abstract The successful discovery and isolation of graphene in 2004, and the subsequent synthesis of layered semiconductors and heterostructures beyond graphene have led to the exploding field of two-dimensional (2D) materials that explore their growth, new atomic-scale physics, and potential device applications. This review aims to provide an overview of theoretical, computational, and machine learning methods and tools at multiple length and time scales, and discuss how they can be utilized to assist/guide the design and synthesis of 2D materials beyond graphene. We focus on three methods at different length and time scales as follows: (i) nanoscale atomistic simulations including density functional theory (DFT) calculations and molecular dynamics simulations employing empirical and reactive interatomic potentials; (ii) mesoscale methods such as phase-field method; and (iii) macroscale continuum approaches by coupling thermal and chemical transport equations. We discuss how machine learning can be combined with computation and experiments to understand the correlations between structures and properties of 2D materials, and to guide the discovery of new 2D materials. We will also provide an outlook for the applications of computational approaches to 2D materials synthesis and growth in general. 
    more » « less
  3. Inspired by the success of graphene, two-dimensional (2D) materials have been at the forefront of advanced (opto-)nanoelectronics and energy-related fields owing to their exotic properties like sizable bandgaps, Dirac fermions, quantum spin Hall states, topological edge states, and ballistic charge carrier transport, which hold promise for various electronic device applications. Emerging main group elemental 2D materials, beyond graphene, are of particular interest due to their unique structural characteristics, ease of synthetic exploration, and superior property tunability. In this review, we present recent advances in atomic-scale studies of elemental 2D materials with an emphasis on synthetic strategies and structural properties. We also discuss the challenges and perspectives regarding the integration of elemental 2D materials into various heterostructures. 
    more » « less
  4. null (Ed.)
    Abstract State-of-the-art nanopore sequencing enables rapid and real-time identification of novel pathogens, which has wide application in various research areas and is an emerging diagnostic tool for infectious diseases including COVID-19. Nanopore translocation enables de novo sequencing with long reads (> 10 kb) of novel genomes, which has advantages over existing short-read sequencing technologies. Biological nanopore sequencing has already achieved success as a technology platform but it is sensitive to empirical factors such as pH and temperature. Alternatively, ångström- and nano-scale solid-state nanopores, especially those based on two-dimensional (2D) membranes, are promising next-generation technologies as they can surpass biological nanopores in the variety of membrane materials, ease of defining pore morphology, higher nucleotide detection sensitivity, and facilitation of novel and hybrid sequencing modalities. Since the discovery of graphene, atomically-thin 2D materials have shown immense potential for the fabrication of nanopores with well-defined geometry, rendering them viable candidates for nanopore sequencing membranes. Here, we review recent progress and future development trends of 2D materials and their ångström- and nano-scale pore-based nucleic acid (NA) sequencing including fabrication techniques and current and emerging sequencing modalities. In addition, we discuss the current challenges of translocation-based nanopore sequencing and provide an outlook on promising future research directions. 
    more » « less
  5. Two-dimensional (2D) atomic layer materials have attracted a great deal of attention due to their superior chemical, physical, and electronic properties, and have demonstrated excellent performance in various applications such as energy storage devices, catalysts, sensors, and transistors. Nevertheless, the cost-effective and large-scale production of high-quality 2D materials is critical for practical applications and progressive development in the industry. Electrochemical exfoliation is a recently introduced technique for the facile, environmentally friendly, fast, large-scale production of 2D materials. In this review, we summarize recent advances in different types of electrochemical exfoliation methods for efficiently preparing 2D materials, along with the characteristics of each method, and then introduce their applications as electrode materials for energy storage devices. Finally, the remaining challenges and prospects for developing the electrochemical exfoliation process of 2D materials for energy storage devices are discussed. 
    more » « less