skip to main content


Title: Smart-phone, paper-based fluorescent sensor for ultra-low inorganic phosphate detection in environmental samples
Abstract

A major goal of environmental agencies today is to conduct point-of-collection monitoring of excess inorganic phosphate (Pi) in environmental water samples for tracking aquatic “dead zones” caused by algae blooms. However, there are no existing commercial devices which have been miniaturized and are suitable for the point-of-need-testing (“PONT”) that is required to fully map a large region, such as the Florida Everglades. To solve this challenge, a reflection-mode fluorescence-sensing apparatus was developed, leveraging an environmentally sensitive fluorophore (MDCC) bound to a bacterial phosphate-binding protein to generate a fluorescent optical signal proportional to the concentration of (Pi) present. The combined end-to-end integrated sensor system had a response time of only 4 s, with minimal effects of common interfering agents and a linear range spanning from 1.1 to 64 ppb. To support ease-of-use during PONT, the platform incorporated disposable wax-printed paper strip sample pads and a smartphone camera detection system. Since the EPA threshold is currently 30 ppb to prevent eutrophication, this system serves as a rapid test of whether a region is compliant.

 
more » « less
Award ID(s):
1647837
NSF-PAR ID:
10154333
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Microsystems & Nanoengineering
Volume:
5
Issue:
1
ISSN:
2055-7434
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In this paper, we report the development of a portable and inexpensive infrared lightbox for improving the detection limits of paper-based phosphate devices. Commercial paper-based devices utilize the molybdenum blue protocol to detect phosphate in the environment. Although these devices are easy to use and have a long shelf life, their main deficiency is their low sensitivity based on the qualitative results obtained via a color chart. To improve the results, we constructed a compact infrared lightbox that communicates wirelessly with a smartphone. The system measures the absorbance of radiation for the molybdenum blue reaction in the infrared region of the spectrum. It consists of a lightbox illuminated by four infrared light-emitting diodes, an infrared digital camera, a Raspberry Pi microcontroller, a mini-router, and an iPhone to control the microcontroller. An iPhone application was also developed to analyze images captured by the infrared camera in order to quantify phosphate concentrations. Additionally, the app connects to an online data center to present a highly scalable worldwide system for tracking and analyzing field measurements. In this study, the detection limits for two popular commercial devices were improved by a factor of 4 for the Quantofix devices (from 1.3 ppm using visible light to 300 ppb using infrared illumination) and a factor of 6 for the Indigo units (from 9.2 ppm to 1.4 ppm) with repeatability of less than or equal to 1.2% relative standard deviation (RSD). The system also provides more granular concentration information compared to the discrete color chart used by commercial devices and it can be easily adapted for use in other applications. 
    more » « less
  2. Summary

    Inorganic phosphate (Pi) is a necessary macronutrient for basic biological processes. Plants modulate their root system architecture (RSA) and cellular processes to adapt to Pi deprivation albeit with a growth penalty. Excess application of Pi fertilizer, on the contrary, leads to eutrophication and has a negative environmental impact.

    We compared RSA, root hair elongation, acid phosphatase activity, metal ion accumulation, and brassinosteroid hormone levels ofSolanum lycopersicum(tomato) andSolanum pennellii, which is a wild relative of tomato, under Pi sufficiency and deficiency conditions to understand the molecular mechanism of Pi deprivation response in tomato.

    We showed thatS.pennelliiis partially insensitive to phosphate deprivation. Furthermore, it mounts a constitutive response under phosphate sufficiency. We demonstrate that activated brassinosteroid signaling through a tomato BZR1 ortholog gives rise to the same constitutive phosphate deficiency response, which is dependent on zinc overaccumulation.

    Collectively, these results reveal an additional strategy by which plants can adapt to phosphate starvation.

     
    more » « less
  3. Inorganic pyrophosphatase (PPase) is an enzyme that catalyzes the hydrolysis of the phosphoanhydride bond in pyrophosphate (PPi) to release inorganic phosphate (Pi) and simultaneously exchange oxygen isotopes between Pi and water. Here, we quantified the exchange kinetics of oxygen isotopes between five Pi isotopologues (P18O4, P18O316O, P18O216O2, P18O16O3, and P16O4) and water using Raman spectroscopy and 31P nuclear magnetic resonance (NMR) during the PPase-catalyzed 18O–16O isotope exchange reaction in Pi-water and PPi-water systems. At a high PPi concentration (300 mM), hydrolysis of PPi by PPase was predominant, and only a small fraction of PPi (≪1%) took part in the reversible hydrolysis–condensation reaction (PPi ↔ Pi), leading to the oxygen isotope exchange between Pi and water. We demonstrated that Raman and NMR methods can be equally applied for monitoring the kinetics of the oxygen exchange between the Pi isotopologue and water. It was found that the isotope exchange determined by the spectroscopic methods was detectable as low as 0.2% 18O abundance, but the reliability below 1% was much lower. Given that high P concentrations (≥1 mM) are required in these methods, environmental application of these methods is limited to rare high P conditions in engineered and agricultural environments. 
    more » « less
  4. Abstract Background information

    Phosphatidylinositol (PI) is an essential phospholipid, critical to membrane bilayers. The complete deacylation of PI by B‐type phospholipases produces intracellular and extracellular glycerophosphoinositol (GPI). Extracellular GPI is transported into the cell via Git1, a member of the Major Facilitator Superfamily of transporters at the yeast plasma membrane. Internalized GPI is degraded to produce inositol, phosphate and glycerol, thereby contributing to these pools.GIT1gene expression is controlled by nutrient balance, with phosphate or inositol starvation increasingGIT1expression to stimulate GPI uptake. However, less is known about control of Git1 protein levels or localization.

    Results

    We find that the α‐arrestins, an important class of protein trafficking adaptor, regulate Git1 localization and this is dependent upon their interaction with the ubiquitin ligase Rsp5. Specifically, α‐arrestin Aly2 stimulates Git1 trafficking to the vacuole under basal conditions, but in response to GPI‐treatment, either Aly1 or Aly2 promote Git1 vacuole trafficking. Cell surface retention of Git1, as occurs inaly1∆ aly2∆ cells, is linked to impaired growth in the presence of exogenous GPI and results in increased uptake of radiolabeled GPI, suggesting that accumulation of GPI somehow causes cellular toxicity. Regulation of α‐arrestin Aly1 by the protein phosphatase calcineurin improves steady‐state and substrate‐induced trafficking of Git1, however, calcineurin plays a larger role in Git1 trafficking beyond regulation of α‐arrestins. Interestingly, loss of Aly1 and Aly2 increased phosphatidylinositol‐3‐phosphate on the limiting membrane of the vacuole, and this was further exacerbated by GPI addition, suggesting that the effect is partially linked to Git1. Loss of Aly1 and Aly2 leads to increased incorporation of inositol label from [3H]‐inositol‐labelled GPI into PI, confirming that internalized GPI influences PI balance and indicating a role for the a‐arrestins in this regulation.

    Conclusions

    The α‐arrestins Aly1 and Aly2 are novel regulators of Git1 trafficking with previously unanticipated roles in controlling phospholipid distribution and balance.

    Significance

    To our knowledge, this is the first example of α‐arrestin regulation of phosphatidyliniositol‐3‐phosphate levels. In future studies it will be exciting to determine if other α‐arrestins similarly alter PI and PIPs to change the cellular landscape.

     
    more » « less
  5. null (Ed.)
    Heavy metal ions are highly toxic and widely spread as environmental pollutants. This work reports the development of two novel chelating adsorbents, based on the chemical modifications of graphene oxide and zirconium phosphate by functionalization with melamine-based chelating ligands for the effective and selective extraction of Hg( ii ) and Pb( ii ) from contaminated water sources. The first adsorbent melamine, thiourea-partially reduced graphene oxide (MT-PRGO) combines the heavier donor atom sulfur with the amine and triazine nitrogen's functional groups attached to the partially reduced GO nanosheets to effectively capture Hg( ii ) ions from water. The MT-PRGO adsorbent shows high efficiency for the extraction of Hg( ii ) with a capacity of 651 mg g −1 and very fast kinetics resulting in a 100% removal of Hg( ii ) from 500 ppb and 50 ppm concentrations in 15 second and 30 min, respectively. The second adsorbent, melamine zirconium phosphate (M-ZrP), is designed to combine the amine and triazine nitrogen's functional groups of melamine with the hydroxyl active sites of zirconium phosphate to effectively capture Pb( ii ) ions from water. The M-ZrP adsorbent shows exceptionally high adsorption affinity for Pb( ii ) with a capacity of 681 mg g −1 and 1000 mg g −1 using an adsorbent dose of 1 g L −1 and 2 g L −1 , respectively. The high adsorption capacity is also coupled with fast kinetics where the equilibrium time required for the 100% removal of Pb( ii ) from 1 ppm, 100 ppm and 1000 ppm concentrations is 40 seconds, 5 min and 30 min, respectively using an adsorbent dose of 1 g L −1 . In a mixture of six heavy metal ions at a concentration of 10 ppm, the removal efficiency is 100% for Pb( ii ), 99% for Hg( ii ), Cd( ii ) and Zn( ii ), 94% for Cu( ii ), and 90% for Ni( ii ) while at a higher concentration of 250 ppm the removal efficiency for Pb( ii ) is 95% compared to 23% for Hg( ii ) and less than 10% for the other ions. Because of the fast adsorption kinetics, high removal capacity, excellent regeneration, stability and reusability, the MT-PRGO and M-ZrP are proposed as top performing remediation adsorbents for the solid phase extraction of Hg( ii ) and Pb( ii ), respectively from contaminated water. 
    more » « less