SUMMARY The establishment of the nitrogen‐fixing symbiosis between soybean andBradyrhizobium japonicumis a complex process. To document the changes in plant metabolism as a result of symbiosis, we utilized laser ablation electrospray ionization‐mass spectrometry (LAESI‐MS) forin situmetabolic profiling of wild‐type nodules, nodules infected with aB. japonicum nifHmutant unable to fix nitrogen, nodules doubly infected by both strains, and nodules formed on plants mutated in thestearoyl‐acyl carrier protein desaturase(sacpd‐c) gene, which were previously shown to have an altered nodule ultrastructure. The results showed that the relative abundance of fatty acids, purines, and lipids was significantly changed in response to the symbiosis. ThenifHmutant nodules had elevated levels of jasmonic acid, correlating with signs of nitrogen deprivation. Nodules resulting from the mixed inoculant displayed similar, overlapping metabolic distributions within the sectors of effective (fix+) and ineffective (nifHmutant, fix−) endosymbionts. These data are inconsistent with the notion that plant sanctioning is cell autonomous. Nodules lackingsacpd‐cdisplayed an elevation of soyasaponins and organic acids in the central necrotic regions. The present study demonstrates the utility of LAESI‐MS for high‐throughput screening of plant phenotypes. Overall, nodules disrupted in the symbiosis were elevated in metabolites related to plant defense. 
                        more » 
                        « less   
                    
                            
                            Observed metabolic asymmetry within soybean root nodules reflects unexpected complexity in rhizobacteria-legume metabolite exchange
                        
                    
    
            Abstract In this study, the three-dimensional spatial distributions of a number of metabolites involved in regulating symbiosis and biological nitrogen fixation (BNF) within soybean root nodules were revealed using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). While many metabolites exhibited distinct spatial compartmentalization, some metabolites were asymmetrically distributed throughout the nodule (e.g., S-adenosylmethionine). These results establish a more complex metabolic view of plant–bacteria symbiosis (and BNF) within soybean nodules than previously hypothesized. Collectively these findings suggest that spatial perspectives in metabolic regulation should be considered to unravel the overall complexity of interacting organisms, like those relating to associations of nitrogen-fixing bacteria with host plants. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1734145
- PAR ID:
- 10154417
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- The ISME Journal
- Volume:
- 12
- Issue:
- 9
- ISSN:
- 1751-7362
- Format(s):
- Medium: X Size: p. 2335-2338
- Size(s):
- p. 2335-2338
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            ABSTRACT Symbiotic nitrogen fixation (SNF) in the interaction between the soil bacteria Sinorhizobium meliloti and legume plant Medicago sativa is carried out in specialized root organs called nodules. During nodule development, each symbiont must drastically alter their proteins, transcripts, and metabolites in order to support nitrogen fixation. Moreover, bacteria within the nodules are under stress, including challenges by plant antimicrobial peptides, low pH, limited oxygen availability, and strongly reducing conditions, all of which challenge proteome integrity. S. meliloti stress adaptation, proteome remodeling, and quality control are controlled in part by the large oligomeric protease complexes HslUV and ClpXP1. To improve understanding of the roles of S. meliloti HslUV and ClpXP1 under free-living conditions and in symbiosis with M. sativa , we generated Δ hslU , Δ hslV , Δ hslUV , and Δ clpP1 knockout mutants. The shoot dry weight of M. sativa plants inoculated with each deletion mutant was significantly reduced, suggesting a role in symbiosis. Further, slower free-living growth of the Δ hslUV and Δ clpP1 mutants suggests that HslUV and ClpP1 were involved in adapting to heat stress, the while Δ hslU and Δ clpP1 mutants were sensitive to kanamycin. All deletion mutants produced less exopolysaccharide and succinoglycan, as shown by replicate spot plating and calcofluor binding. We also generated endogenous C-terminal enhanced green fluorescent protein (eGFP) fusions to HslU, HslV, ClpX, and ClpP1 in S. meliloti . Using anti-eGFP antibodies, native coimmunoprecipitation experiments with proteins from free-living and nodule tissues were performed and analyzed by mass spectrometry. The results suggest that HslUV and ClpXP were closely associated with ribosomal and proteome quality control proteins, and they identified several novel putative protein-protein interactions. IMPORTANCE Symbiotic nitrogen fixation (SNF) is the primary means by which biologically available nitrogen enters the biosphere, and it is therefore a critical component of the global nitrogen cycle and modern agriculture. SNF is the result of highly coordinated interactions between legume plants and soil bacteria collectively referred to as rhizobia, e.g., Medicago sativa and S. meliloti , respectively. Accomplishing SNF requires significant proteome changes in both organisms to create a microaerobic environment suitable for high-level bacterial nitrogenase activity. The bacterial protease systems HslUV and ClpXP are important in proteome quality control, in metabolic remodeling, and in adapting to stress. This work shows that S. meliloti HslUV and ClpXP are involved in SNF, in exopolysaccharide production, and in free-living stress adaptation.more » « less
- 
            null (Ed.)Nitrogen is a major determinant of plant growth and productivity and the ability of legumes to form a symbiotic relationship with nitrogen-fixing rhizobia bacteria allows legumes to exploit nitrogen-poor niches in the biosphere. But hosting nitrogen-fixing bacteria comes with a metabolic cost, and the process requires regulation. The symbiosis is regulated through three signal transduction pathways: in response to available nitrogen, at the initiation of contact between the organisms, and during the development of the nodules that will host the rhizobia. Here we provide an overview of our knowledge of how the three signaling pathways operate in space and time, and what we know about the cross-talk between symbiotic signaling for nodule initiation and organogenesis, nitrate dependent signaling, and autoregulation of nodulation. Identification of common components and points of intersection suggest directions for research on the fine-tuning of the plant’s response to rhizobia.more » « less
- 
            Abstract Under nitrogen starvation, most legume plants form a nitrogen-fixing symbiosis with Rhizobium bacteria. The bacteria induce the formation of a novel organ called the nodule in which rhizobia reside as intracellular symbionts and convert atmospheric nitrogen into ammonia. During this symbiosis, miRNAs are essential for coordinating the various plant processes required for nodule formation and function. miRNAs are non-coding, endogenous RNA molecules, typically 20–24 nucleotides long, that negatively regulate the expression of their target mRNAs. Some miRNAs can move systemically within plant tissues through the vascular system, which mediates, for example, communication between the stem/leaf tissues and the roots. In this review, we summarize the growing number of miRNAs that function during legume nodulation focusing on two model legumes, Lotus japonicus and Medicago truncatula, and two important legume crops, soybean (Glycine max) and common bean (Phaseolus vulgaris). This regulation impacts a variety of physiological processes including hormone signaling and spatial regulation of gene expression. The role of mobile miRNAs in regulating legume nodule number is also highlighted.more » « less
- 
            Abstract Symbiotic nitrogen (N) fixation entails successful interaction between legume hosts and rhizobia that occur in specialized organs called nodules. N-fixing legumes have a higher demand for phosphorus (P) than legumes grown on mineral N. Medicago truncatula is an important model plant for characterization of effects of P deficiency at the molecular level. Hence, a study was carried out to address the alteration in metabolite levels of M. truncatula grown aeroponically and subjected to 4 weeks of P stress. First, GC-MS-based untargeted metabolomics initially revealed changes in the metabolic profile of nodules, with increased levels of amino acids and sugars and a decline in amounts of organic acids. Subsequently, LC-MS/MS was used to quantify these compounds including phosphorylated metabolites in the whole plant. Our results showed a drastic reduction in levels of organic acids and phosphorylated compounds in –P leaves, with a moderate reduction in –P roots and nodules. Additionally, sugars and amino acids were elevated in the whole plant under P deprivation. These findings provide evidence that N fixation in M. truncatula is mediated through a N feedback mechanism that in parallel is related to carbon and P metabolism.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
