skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Data-dependent compression of random features for large-scale kernel approximation
Kernel methods offer the flexibility to learn complex relationships in modern, large data sets while enjoying strong theoretical guarantees on quality. Unfortunately, these methods typically require cubic running time in the data set size, a prohibitive cost in the large-data setting. Random feature maps (RFMs) and the Nyström method both consider low-rank approximations to the kernel matrix as a potential solution. But, in order to achieve desirable theoretical guarantees, the former may require a prohibitively large number of features J+, and the latter may be prohibitively expensive for high-dimensional problems. We propose to combine the simplicity and generality of RFMs with a data-dependent feature selection scheme to achieve desirable theoretical approximation properties of Nyström with just O(\log J+) features. Our key insight is to begin with a large set of random features, then reduce them to a small number of weighted features in a data-dependent, computationally efficient way, while preserving the statistical guarantees of using the original large set of features. We demonstrate the efficacy of our method with theory and experiments-including on a data set with over 50 million observations. In particular, we show that our method achieves small kernel matrix approximation error and better test set accuracy with provably fewer random features than state-of-the-art methods.  more » « less
Award ID(s):
1750286
PAR ID:
10154447
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of Machine Learning Research
ISSN:
2640-3498
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Nyström approximation is a fast randomized method that rapidly solves kernel ridge regression (KRR) problems through sub-sampling the n-by-n empirical kernel matrix appearing in the objective function. However, the performance of such a sub-sampling method heavily relies on correctly estimating the statistical leverage scores for forming the sampling distribution, which can be as costly as solving the original KRR. In this work, we propose a linear time (modulo poly-log terms) algorithm to accurately approximate the statistical leverage scores in the stationary-kernel-based KRR with theoretical guarantees. Particularly, by analyzing the first-order condition of the KRR objective, we derive an analytic formula, which depends on both the input distribution and the spectral density of stationary kernels, for capturing the non-uniformity of the statistical leverage scores. Numerical experiments demonstrate that with the same prediction accuracy our method is orders of magnitude more efficient than existing methods in selecting the representative sub-samples in the Nyström approximation. 
    more » « less
  2. The Nyström method is a matrix approximation technique that has shown great promise in speeding up spectral clustering. However, when the input matrix is sparse, we show that the traditional Nyström method requires a prohibitively large number of samples to obtain a good approximation. We propose a novel sampling approach to select the landmark points used to compute the Nyström approximation. We show that the proposed sampling approach obeys the same error bound as in Bouneffouf and Birol (2015). To control sample complexity, we propose a selective densification step based on breadth-first traversal. We show that the proposed densification does not change the optimal clustering. Results on real world datasets show that by combining the proposed sampling and densification schemes, we can obtain better accuracy compared to other techniques used for the Nyström method while using significantly fewer samples. 
    more » « less
  3. Kernel dimensionality reduction (KDR) algorithms find a low dimensional representation of the original data by optimizing kernel dependency measures that are capable of capturing nonlinear relationships. The standard strategy is to first map the data into a high dimensional feature space using kernels prior to a projection onto a low dimensional space. While KDR methods can be easily solved by keeping the most dominant eigenvectors of the kernel matrix, its features are no longer easy to interpret. Alternatively, Interpretable KDR (IKDR) is different in that it projects onto a subspace \textit{before} the kernel feature mapping, therefore, the projection matrix can indicate how the original features linearly combine to form the new features. Unfortunately, the IKDR objective requires a non-convex manifold optimization that is difficult to solve and can no longer be solved by eigendecomposition. Recently, an efficient iterative spectral (eigendecomposition) method (ISM) has been proposed for this objective in the context of alternative clustering. However, ISM only provides theoretical guarantees for the Gaussian kernel. This greatly constrains ISM's usage since any kernel method using ISM is now limited to a single kernel. This work extends the theoretical guarantees of ISM to an entire family of kernels, thereby empowering ISM to solve any kernel method of the same objective. In identifying this family, we prove that each kernel within the family has a surrogate Φ matrix and the optimal projection is formed by its most dominant eigenvectors. With this extension, we establish how a wide range of IKDR applications across different learning paradigms can be solved by ISM. To support reproducible results, the source code is made publicly available on \url{https://github.com/ANONYMIZED} 
    more » « less
  4. null (Ed.)
    This survey describes probabilistic algorithms for linear algebraic computations, such as factorizing matrices and solving linear systems. It focuses on techniques that have a proven track record for real-world problems. The paper treats both the theoretical foundations of the subject and practical computational issues. Topics include norm estimation, matrix approximation by sampling, structured and unstructured random embeddings, linear regression problems, low-rank approximation, subspace iteration and Krylov methods, error estimation and adaptivity, interpolatory and CUR factorizations, Nyström approximation of positive semidefinite matrices, single-view (‘streaming’) algorithms, full rank-revealing factorizations, solvers for linear systems, and approximation of kernel matrices that arise in machine learning and in scientific computing. 
    more » « less
  5. Krylov subspace methods are a ubiquitous tool for computing near-optimal rank kk approximations of large matrices. While "large block" Krylov methods with block size at least kk give the best known theoretical guarantees, block size one (a single vector) or a small constant is often preferred in practice. Despite their popularity, we lack theoretical bounds on the performance of such "small block" Krylov methods for low-rank approximation. We address this gap between theory and practice by proving that small block Krylov methods essentially match all known low-rank approximation guarantees for large block methods. Via a black-box reduction we show, for example, that the standard single vector Krylov method run for t iterations obtains the same spectral norm and Frobenius norm error bounds as a Krylov method with block size ℓ≥kℓ≥k run for O(t/ℓ)O(t/ℓ) iterations, up to a logarithmic dependence on the smallest gap between sequential singular values. That is, for a given number of matrix-vector products, single vector methods are essentially as effective as any choice of large block size. By combining our result with tail-bounds on eigenvalue gaps in random matrices, we prove that the dependence on the smallest singular value gap can be eliminated if the input matrix is perturbed by a small random matrix. Further, we show that single vector methods match the more complex algorithm of [Bakshi et al. `22], which combines the results of multiple block sizes to achieve an improved algorithm for Schatten pp-norm low-rank approximation. 
    more » « less