skip to main content

Search for: All records

Award ID contains: 1750286

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2024
  2. Camps-Valls, G ; Ruiz, F. J. ; Valera, I. (Ed.)
  3. Camps-Valls, G ; Ruiz, F. J. ; Valera, I. (Ed.)
  4. null (Ed.)
    Abstract While the cost of sequencing genomes has decreased dramatically in recent years, this expense often remains non-trivial. Under a fixed budget, scientists face a natural trade-off between quantity and quality: spending resources to sequence a greater number of genomes or spending resources to sequence genomes with increased accuracy. Our goal is to find the optimal allocation of resources between quantity and quality. Optimizing resource allocation promises to reveal as many new variations in the genome as possible. In this paper, we introduce a Bayesian nonparametric methodology to predict the number of new variants in a follow-up study based on a pilot study. When experimental conditions are kept constant between the pilot and follow-up, we find that our prediction is competitive with the best existing methods. Unlike current methods, though, our new method allows practitioners to change experimental conditions between the pilot and the follow-up. We demonstrate how this distinction allows our method to be used for more realistic predictions and for optimal allocation of a fixed budget between quality and quantity. 
    more » « less
  5. null (Ed.)