Due to the ubiquity of IoT devices, privacy violations can now occur across our cyber-physical-social lives. An individual is often not aware of the possible privacy implications of their actions and commonly lacks the ability to dynamically control the undesired access to themselves or their information. Present approaches to privacy management lack an immediacy of feedback and action, tend to be complex and non-engaging, are intrusive and socially inappropriate, and are inconsistent with users' natural interactions with the physical and social environment. This results in ineffective end-user privacy management. To address these challenges, I focus on designing tangible systems, which promise to provide high levels of stimulation, rich feedback, direct, and engaging interaction experiences. This is achieved through intuitive awareness mechanisms and control interactions, conceptualizing interaction metaphors, implementing tangible interfaces for privacy management and demonstrating their utility within various real life scenarios.
more »
« less
Planning for Change: Assessing the Potential Role of Marine Protected Areas and Fisheries Management Approaches for Resilience Management in a Changing Ocean
More Like this
-
-
Given the technical flaws with—and the increasing non-observance of—the TCP-friendliness paradigm, we must rethink how the Inter- net should manage bandwidth allocation. We explore this question from first principles, but remain within the constraints of the In- ternet’s current architecture and commercial arrangements. We propose a new framework, Recursive Congestion Shares (RCS), that provides bandwidth allocations independent of which congestion control algorithms flows use but consistent with the Internet’s eco- nomics. We show that RCS achieves this goal using game-theoretic calculations and simulations as well as network emulation.more » « less
An official website of the United States government

