skip to main content


Search for: All records

Award ID contains: 1735911

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Keystone predation can be a determinant of community structure, including species diversity, but factors underlying “keystoneness” have been minimally explored. Using the system in which the original keystone, the sea starPisaster ochraceus, was discovered, we focused on two potential (but overlapping) determinants of keystoneness: intrinsic traits or state variables of the species (e.g., size, density), and extrinsic environmental parameters (e.g., prey productivity) that may provide conditions favorable for keystone predator evolution. Using a comparative‐experimental approach, with repeated field experiments at multiple sites across a variable coastal environment, we tested predation rates, or how quickly predators consumed prey, and predation effects, or community response to predator presence or absence. We tested five hypotheses: (H1) predation rates and effects will vary in space but not time; (H2) per population predation rates will vary primarily with individual traits and population variables; (HJHH3) per capita predation rates will vary only with individual traits; (H4) predation effects will vary with traits, variables, and external drivers; and (H5) as predicted by the keystone predation hypothesis, diversity will vary unimodally with predation pressure. As hypothesized, predation rates differed among sites but not over time (H1), and in caging exclusion experiments, predation effect varied with both intrinsic and extrinsic factors (H4). Unexpectedly, predation rates varied with both intrinsic and extrinsic (H2, per population), or only with extrinsic (H3, per capita) factors. Further, in large‐plot exclusion experiments, predation effect was most closely associated with individual traits (contraH4). Finally, taxon diversity varied unimodally with proxies of predation pressure (sessile prey abundance) and was sensitive to extrinsic factors (mussel growth, temperature, and upwelling,H5). Hence, keystoneness depended on predator individual traits, predator population variables, and environmental parameters. However, temporal differences in caging experiments suggested that environmental characteristics underlying prey dynamics may be preeminent. Compared to prior experiments, predation was weaker with low prey input compared to periods with high prey input. Collectively, our results suggest that keystone predator evolution depends on the coalescence of species‐specific characteristics, and environmental parameters favoring high prey productivity. Our approach may be a model for future studies exploring the generality of keystoneness.

     
    more » « less
  2. Climate change threatens to destabilize ecological communities, potentially moving them from persistently occupied “basins of attraction” to different states. Increasing variation in key ecological processes can signal impending state shifts in ecosystems. In a rocky intertidal meta-ecosystem consisting of three distinct regions spread across 260 km of the Oregon coast, we show that annually cleared sites are characterized by communities that exhibit signs of increasing destabilization (loss of resilience) over the past decade despite persistent community states. In all cases, recovery rates slowed and became more variable over time. The conditions underlying these shifts appear to be external to the system, with thermal disruptions (e.g., marine heat waves, El Niño–Southern Oscillation) and shifts in ocean currents (e.g., upwelling) being the likely proximate drivers. Although this iconic ecosystem has long appeared resistant to stress, the evidence suggests that subtle destabilization has occurred over at least the last decade. 
    more » « less
  3. Top predator decline has been ubiquitous across systems over the past decades and centuries, and predicting changes in resultant community dynamics is a major challenge for ecologists and managers. Ecological release predicts that loss of a limiting factor, such as a dominant competitor or predator, can release a species from control, thus allowing increases in its size, density, and/or distribution. The 2014 sea star wasting syndrome (SSWS) outbreak decimated populations of the keystone predator Pisaster ochraceus along the Oregon coast, USA. This event provided an opportunity to test the predictions of ecological release across a broad spatial scale and determine the role of competitive dynamics in top predator recovery. We hypothesized that after P. ochraceus loss, populations of the subordinate sea star Leptasterias sp. would grow larger, more abundant, and move downshore. We based these predictions on prior research in Washington State showing that Leptasterias sp. competed with P. ochraceus for food. Further, we predicted that ecological release of Leptasterias sp. could provide a bottleneck to P. ochraceus recovery. Using field surveys, we found no clear change in density or distribution in Leptasterias sp. populations post-SSWS, and decreases in body size. In a field experiment, we found no evidence of competition between similar-sized Leptasterias sp. and P. ochraceus . Thus, the mechanisms underlying our predictions were not in effect along the Oregon coast, which we attribute to differences in habitat overlap and food availability between the 2 regions. Our results suggest that response to the loss of a dominant competitor can be unpredictable even when based in theory and previous research. 
    more » « less