Modern web applications are distributed across a browser-based client and a cloud-based server. Distribution provides access to remote resources, accessed over the web and shared by clients. Much of the complexity of inspecting and evolving web applications lies in their distributed nature. Also, the majority of mature program analysis and transformation tools works only with centralized software. Inspired by business process re-engineering, in which remote operations can be insourced back in house to restructure and outsource anew, we bring an analogous approach to the re-engineering of web applications. Our target domain are full-stack JavaScript applications that implement both the client and server code in this language. Our approach is enabled by Client Insourcing, a novel automatic refactoring that creates a semantically equivalent centralized version of a distributed application. This centralized version is then inspected, modified, and redistributed to meet new requirements. After describing the design and implementation of Client Insourcing, we demonstrate its utility and value in addressing changes in security, reliability, and performance requirements. By reducing the complexity of the non-trivial program inspection and evolution tasks performed to meet these requirements, our approach can become a helpful aid in the re-engineering of web applications in this domain.
more »
« less
Catch & Release: An Approach to Debugging Distributed Full-Stack JavaScript Applications
Localizing bugs in distributed applications is complicated by the potential presence of server/middleware misconfigurations and intermittent network connectivity. In this paper, we present a novel approach to localizing bugs in distributed web applications, targeting the important domain of full-stack JavaScript applications. The debugged application is first automatically refactored to create its semantically equivalent centralized version by gluing together the application’s client and server parts, thus separating the programmer-written code from configuration/environmental issues as suspected bug causes. The centralized version is then debugged to fix various bugs. Finally, based on the bug fixing changes of the centralized version, a patch is automatically generated to fix the original application source files. We show how our approach can be used to catch bugs that include performance bottlenecks and memory leaks. These results indicate that our debugging approach can facilitate the challenges of localizing and fixing bugs in web applications.
more »
« less
- Award ID(s):
- 1717065
- PAR ID:
- 10154786
- Date Published:
- Journal Name:
- In: Bakaev M., Frasincar F., Ko IY. (eds) Web Engineering. ICWE 2019. Lecture Notes in Computer Science, vol 11496. Springer, Cham
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Static analysis tools have demonstrated effectiveness at finding bugs in real world code. Such tools are increasingly widely adopted to improve software quality in practice. Automated Program Repair (APR) has the potential to further cut down on the cost of improving software quality. However, there is a disconnect between these effective bug-finding tools and APR. Recent advances in APR rely on test cases, making them inapplicable to newly discovered bugs or bugs difficult to test for deterministically (like memory leaks). Additionally, the quality of patches generated to satisfy a test suite is a key challenge. We address these challenges by adapting advances in practical static analysis and verification techniques to enable a new technique that finds and then accurately fixes real bugs without test cases. We present a new automated program repair technique using Separation Logic. At a high-level, our technique reasons over semantic effects of existing program fragments to fix faults related to general pointer safety properties: resource leaks, memory leaks, and null dereferences. The procedure automatically translates identified fragments into source-level patches, and verifies patch correctness with respect to reported faults. In this work we conduct the largest study of automatically fixing undiscovered bugs in real-world code to date. We demonstrate our approach by correctly fixing 55 bugs, including 11 previously undiscovered bugs, in 11 real-world projects.more » « less
-
Significant interest in applying Deep Neural Network (DNN) has fueled the need to support engineering of software that uses DNNs. Repairing software that uses DNNs is one such unmistakable SE need where automated tools could be very helpful; however, we do not fully understand challenges to repairing and patterns that are utilized when manually repairing them. What challenges should automated repair tools address? What are the repair patterns whose automation could help developers? Which repair patterns should be assigned a higher priority for automation? This work presents a comprehensive study of bug fix patterns to address these questions. We have studied 415 repairs from Stack Overflow and 555 repairs from GitHub for five popular deep learning libraries Caffe, Keras, Tensorflow, Theano, and Torch to understand challenges in repairs and bug repair patterns. Our key findings reveal that DNN bug fix patterns are distinctive compared to traditional bug fix patterns; the most common bug fix patterns are fixing data dimension and neural network connectivity; DNN bug fixes have the potential to introduce adversarial vulnerabilities; DNN bug fixes frequently introduce new bugs; and DNN bug localization, reuse of trained model, and coping with frequent releases are major challenges faced by developers when fixing bugs. We also contribute a benchmark of 667 DNN (bug, repair) instances.more » « less
-
Automatically fixing software bugs is a challenging task. While recent work showed that natural language context is useful in guiding bug-fixing models, the approach required prompting developers to provide this context, which was simulated through commit messages written after the bug-fixing code changes were made. We instead propose using bug report discussions, which are available before the task is performed and are also naturally occurring, avoiding the need for any additional information from developers. For this, we augment standard bug-fixing datasets with bug report discussions. Using these newly compiled datasets, we demonstrate that various forms of natural language context derived from such discussions can aid bug-fixing, even leading to improved performance over using commit messages corresponding to the oracle bug-fixing commits.more » « less
-
Server-side web applications are vulnerable to request races. While some previous studies of real-world request races exist, they primarily focus on the root cause of these bugs. To better combat request races in server-side web applications, we need a deep understanding of their characteristics. In this paper, we provide a complementary focus on race effects and fixes with an enlarged set of request races from web applications developed with Object-Relational Mapping (ORM) frameworks. We revisit characterization questions used in previous studies on newly included request races, distinguish the external and internal effects of request races, and relate requestrace fixes with concurrency control mechanisms in languages and frameworks for developing server-side web applications. Our study reveals that: (1) request races from ORM-based web applications share the same characteristics as those from raw-SQL web applications; (2) request races violating application semantics without explicit crashes and error messages externally are common, and latent request races, which only corrupt some shared resource internally but require extra requests to expose the misbehavior, are also common; and (3) various fix strategies other than using synchronization mechanisms are used to fix request races. We expect that our results can help developers better understand request races and guide the design and development of tools for combating request races.more » « less
An official website of the United States government

