skip to main content


Title: Static automated program repair for heap properties
Static analysis tools have demonstrated effectiveness at finding bugs in real world code. Such tools are increasingly widely adopted to improve software quality in practice. Automated Program Repair (APR) has the potential to further cut down on the cost of improving software quality. However, there is a disconnect between these effective bug-finding tools and APR. Recent advances in APR rely on test cases, making them inapplicable to newly discovered bugs or bugs difficult to test for deterministically (like memory leaks). Additionally, the quality of patches generated to satisfy a test suite is a key challenge. We address these challenges by adapting advances in practical static analysis and verification techniques to enable a new technique that finds and then accurately fixes real bugs without test cases. We present a new automated program repair technique using Separation Logic. At a high-level, our technique reasons over semantic effects of existing program fragments to fix faults related to general pointer safety properties: resource leaks, memory leaks, and null dereferences. The procedure automatically translates identified fragments into source-level patches, and verifies patch correctness with respect to reported faults. In this work we conduct the largest study of automatically fixing undiscovered bugs in real-world code to date. We demonstrate our approach by correctly fixing 55 bugs, including 11 previously undiscovered bugs, in 11 real-world projects.  more » « less
Award ID(s):
1563797
PAR ID:
10081985
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the 40th International Conference on Software Engineering
Page Range / eLocation ID:
151 to 162
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Linux Kernel is a world-class operating system controlling most of our computing infrastructure: mobile devices, Internet routers and services, and most of the supercomputers. Linux is also an example of low-level software with no comprehensive regression test suite (for good reasons). The kernel’s tremendous societal importance imposes strict stability and correctness requirements. These properties make Linux a challenging and relevant target for static automated program repair (APR).

    Over the past decade, a significant progress has been made in dynamic APR. However, dynamic APR techniques do not translate naturally to systems without tests. We present a static APR technique addressing sequentiallocking API misusebugs in the Linux Kernel. We attack the key challenge of static APR, namely, the lack of detailed program specification, by combining static analysis with machine learning to complement the information presented by the static analyzer. In experiments on historical real-world bugs in the kernel, we were able to automatically re-produce or propose equivalent patches in 85% of the human-made patches, and automatically rank them among the top three candidates for 64% of the cases and among the top five for 74%.

     
    more » « less
  2. Automated Program Repair (APR) is one of the most recent advances in automated debugging, and can directly fix buggy programs with minimal human intervention. Although various advanced APR techniques (including search-based or semantic-based ones) have been proposed, they mainly work at the source-code level and it is not clear how bytecode-level APR performs in practice. Also, empirical studies of the existing techniques on bugs beyond what has been reported in the original papers are rather limited. In this paper, we implement the first practical bytecode-level APR technique, PraPR, and present the first extensive study on fixing real-world bugs (e.g., Defects4J bugs) using JVM bytecode mutation. The experimental results show that surprisingly even PraPR with only the basic traditional mutators can produce genuine fixes for 17 bugs; with simple additional commonly used APR mutators, PraPR is able to produce genuine fixes for 43 bugs, significantly outperforming state-of-the-art APR, while being over 10X faster. Furthermore, we performed an extensive study of PraPR and other recent APR tools on a large number of additional real-world bugs, and demonstrated the overfitting problem of recent advanced APR tools for the first time. Lastly, PraPR has also successfully fixed bugs for other JVM languages (e.g., for the popular Kotlin language), indicating PraPR can greatly complement existing source-code-level APR. 
    more » « less
  3. Rudolph, Günter ; Konova, Anna ; Aguirre, Hernán ; Kerschke, Pascal ; Ochoa, G. ; Tušar, Tea (Ed.)
    Search-based methods are a popular approach for automatically repairing software bugs, a field known as automated program repair (APR). There is increasing interest in empirical evaluation and comparison of different APR methods, typically measured as the rate of successful repairs on benchmark sets of buggy programs. Such evaluations, however, fail to explain why some approaches succeed and others fail. Because these methods typically use syntactic representations, i.e., source code, we know little about how the different methods explore their semantic spaces, which is relevant for assessing repair quality and understanding search dynamics. We propose an automated method based on program semantics, which provides quantitative and qualitative information about different APR search-based techniques. Our approach requires no manual annotation and produces both mathematical and human-understandable insights. In an empirical evaluation of 4 APR tools and 34 defects, we investigate the relationship between search-space exploration, semantic diversity and repair success, examining both the overall picture and how the tools’ search unfolds. Our results suggest that population diversity alone is not sufficient for finding repairs, and that searching in the right place is more important than searching broadly, highlighting future directions for the research community 
    more » « less
  4. Of the hundreds of billions of dollars spent on developer wages, up to 25% accounts for fixing bugs. Companies like Google save significant human effort and engineering costs with automatic bug detection tools, yet automatically fixing them is still a nascent endeavour. Very recent work (including our own) demonstrates the feasibility of automatic program repair in practice. As automated repair technology matures, it presents great appeal for integration into developer workflows. We believe software bots are a promising vehicle for realizing this integration, as they bridge the gap between human software development and automated processes. We envision repair bots orchestrating automated refactoring and bug fixing. To this end, we explore what building a repair bot entails. We draw on our understanding of patch generation, validation, and real world software development interactions to identify six principles that bear on engineering repair bots and discuss related design challenges for integrating human workflows. Ultimately, this work aims to foster critical focus and interest for making repair bots a reality. 
    more » « less
  5. null (Ed.)
    Automated debugging techniques, including fault localization and program repair, have been studied for over a decade. However, the only existing connection between fault localization and program repair is that fault localization computes the potential buggy elements for program repair to patch. Recently, a pioneering work, ProFL, explored the idea of unified debugging to unify fault localization and program repair in the other direction for the first time to boost both areas. More specifically, ProFL utilizes the patch execution results from one state-of-the-art repair system, PraPR, to help improve state-of-the-art fault localization. In this way, ProFL not only improves fault localization for manual repair, but also extends the application scope of automated repair to all possible bugs (not only the small ratio of bugs that can be automatically fixed). However, ProFL only considers one APR system (i.e., PraPR), and it is not clear how other existing APR systems based on different designs contribute to unified debugging. In this work, we perform an extensive study of the unified-debugging approach on 16 state-of-the-art program repair systems for the first time. Our experimental results on the widely studied Defects4J benchmark suite reveal various practical guidelines for unified debugging, such as (1) nearly all the studied 16 repair systems can positively contribute to unified debugging despite their varying repairing capabilities, (2) repair systems targeting multi-edit patches can bring extraneous noise into unified debugging, (3) repair systems with more executed/plausible patches tend to perform better for unified debugging, and (4) unified debugging effectiveness does not rely on the availability of correct patches in automated repair. Based on our results, we further propose an advanced unified debugging technique, UniDebug++, which can localize over 20% more bugs within Top-1 positions than state-of-the-art unified debugging technique, ProFL. 
    more » « less