Mate Choice: Should I Mate or Should I Go?
- Award ID(s):
- 1755385
- PAR ID:
- 10155033
- Date Published:
- Journal Name:
- Current Biology
- Volume:
- 30
- Issue:
- 3
- ISSN:
- 0960-9822
- Page Range / eLocation ID:
- R118 to R120
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract At the heart of all biological processes lies the control of nuclear gene expression, which is primarily achieved through the action of transcription factors (TFs) that generally contain a nuclear localization signal (NLS) to facilitate their transport into the nucleus. However, some TFs reside in the cytoplasm in a transcriptionally inactive state and only enter the nucleus in response to specific signals, which in plants include biotic or abiotic stresses. These extra-nuclear TFs can be found in the cytosol or associated with various membrane systems, including the endoplasmic reticulum and plasma membrane. They may be integral proteins with transmembrane domains or associate peripherally with the lipid bilayer via acylation or membrane-binding domains. Although over 30 plant TFs, most of them involved in stress responses, have been experimentally shown to reside outside the nucleus, computational predictions suggest that this number is much larger. Understanding how extra-nuclear TFs are trafficked into the nucleus is essential for reconstructing transcriptional regulatory networks that govern major cellular pathways in response to biotic and abiotic signals. Here, we provide a perspective on what is known on plant extranuclear-nuclear TF retention, nuclear trafficking, and the post-translational modifications that ultimately enable them to regulate gene expression upon entering the nucleus.more » « less
-
Will automated driving help or hurt our efforts to remedy climate change? The overall impact of transportation and mobility on the global ecosystem is clear: changes to that system can greatly affect climate outcomes. The design of mobility and automotive systems will influence key fac- tors such as driving style, fuel choice, ride sharing, traffic patterns, and total mileage. However, to date, there are few research efforts that explicitly focus on these overlap- ping themes (automated driving & climate changes) within the HCI and AutomotiveUI communities. Our intention is to grow this community and awareness of the related prob- lems. Specifically, in this workshop, we invite designers, researchers, and practitioners from the sustainable HCI, persuasive design, AutomotiveUI, and mobility communities to collaborate in finding ways to make future mobility more sustainable. Using embodied design improvisation and de- sign fiction methods, we will explore the ways that systems affect behavior which then affect the environment.more » « less
-
Abstract Variation in temperature can affect the expression of a variety of important fitness‐related behaviours, including those involved with mate attraction and selection, with consequences for the coordination of mating across variable environments. We examined how temperature influences the expression of male mating signals and female mate preferences—as well as the relationship between how male signals and female mate preferences change across temperatures (signal–preference temperature coupling)—inEnchenopa binotatatreehoppers. These small plant‐feeding insects communicate using plantborne vibrations, and our field surveys indicate they experience significant natural variation in temperature during the mating season. We tested for signal–preference temperature coupling in four populations ofE. binotataby manipulating temperature in a controlled laboratory environment. We measured the frequency of male signals—the trait for which females show strongest preference—and female peak preference—the signal frequency most preferred by females—across a range of biologically relevant temperatures (18°C–36°C). We found a strong effect of temperature on both male signals and female preferences, which generated signal–preference temperature coupling within each population. Even in a population in which male signals mismatched female preferences, the temperature coupling reinforces predicted directional selection across all temperatures. Additionally, we found similar thermal sensitivity in signals and preferences across populations even though populations varied in the mean frequency of male signals and female peak preference. Together, these results suggest that temperature variation should not affect the action of sexual selection via female choice, but rather should reinforce stabilizing selection in populations with signal–preference matches, and directional selection in those with signal–preference mismatches. Finally, we do not predict that thermal variation will disrupt the coordination of mating in this species by generating signal–preference mismatches at thermal extremes.more » « less
An official website of the United States government

