Malware detection and analysis can be a burdensome task for incident responders. As such, research has turned to machine learning to automate malware detection and malware family classification. Existing work extracts and engineers static and dynamic features from the malware sample to train classifiers. Despite promising results, such techniques assume that the analyst has access to the malware executable file. Self-deleting malware invalidates this assumption and requires analysts to find forensic evidence of malware execution for further analysis. In this paper, we present and evaluate an approach to detecting malware that executed on a Windows target and further classify the malware into its associated family to provide semantic insight. Specifically, we engineer features from the Windows prefetch file, a file system forensic artifact that archives process information. Results show that it is possible to detect the malicious artifact with 99% accuracy; furthermore, classifying the malware into a fine-grained family has comparable performance to techniques that require access to the original executable. We also provide a thorough security discussion of the proposed approach against adversarial diversity.
more »
« less
Neurlux: dynamic malware analysis without feature engineering
Malware detection plays a vital role in computer security. Modern machine learning approaches have been centered around domain knowledge for extracting malicious features. However, many potential features can be used, and it is time consuming and difficult to manually identify the best features, especially given the diverse nature of malware.
In this paper, we propose Neurlux, a neural network for malware detection. Neurlux does not rely on any feature engineering, rather it learns automatically from dynamic analysis reports that detail behavioral information. Our model borrows ideas from the field of document classification, using word sequences present in the reports to predict if a report is from a malicious binary or not. We investigate the learned features of our model and show which components of the reports it tends to give the highest importance. Then, we evaluate our approach on two different datasets and report formats, showing that Neurlux improves on the state of the art and can effectively learn from the dynamic analysis reports. Furthermore, we show that our approach is portable to other malware analysis environments and generalizes to different datasets.
more »
« less
- Award ID(s):
- 1704253
- NSF-PAR ID:
- 10155108
- Date Published:
- Journal Name:
- Proceedings of the 35th Annual Computer Security Applications Conference
- Page Range / eLocation ID:
- 444 to 455
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Ko, Hanseok (Ed.)Malware represents a significant security concern in today’s digital landscape, as it can destroy or disable operating systems, steal sensitive user information, and occupy valuable disk space. However, current malware detection methods, such as static-based and dynamic-based approaches, struggle to identify newly developed ("zero-day") malware and are limited by customized virtual machine (VM) environments. To overcome these limitations, we propose a novel malware detection approach that leverages deep learning, mathematical techniques, and network science. Our approach focuses on static and dynamic analysis and utilizes the Low-Level Virtual Machine (LLVM) to profile applications within a complex network. The generated network topologies are input into the GraphSAGE architecture to efficiently distinguish between benign and malicious software applications, with the operation names denoted as node features. Importantly, the GraphSAGE models analyze the network’s topological geometry to make predictions, enabling them to detect state-of-the-art malware and prevent potential damage during execution in a VM. To evaluate our approach, we conduct a study on a dataset comprising source code from 24,376 applications, specifically written in C/C++, sourced directly from widely-recognized malware and various types of benign software. The results show a high detection performance with an Area Under the Receiver Operating Characteristic Curve (AUROC) of 99.85%. Our approach marks a substantial improvement in malware detection, providing a notably more accurate and efficient solution when compared to current state-of-the-art malware detection methods. The code is released at https://github.com/HantangZhang/MGN.more » « less
-
null (Ed.)Machine learning-based malware detection systems are often vulnerable to evasion attacks, in which a malware developer manipulates their malicious software such that it is misclassified as benign. Such software hides some properties of the real class or adopts some properties of a different class by applying small perturbations. A special case of evasive malware hides by repackaging a bonafide benign mobile app to contain malware in addition to the original functionality of the app, thus retaining most of the benign properties of the original app. We present a novel malware detection system based on metamorphic testing principles that can detect such benign-seeming malware apps. We apply metamorphic testing to the feature representation of the mobile app, rather than to the app itself. That is, the source input is the original feature vector for the app and the derived input is that vector with selected features removed. If the app was originally classified benign, and is indeed benign, the output for the source and derived inputs should be the same class, i.e., benign, but if they differ, then the app is exposed as (likely) malware. Malware apps originally classified as malware should retain that classification, since only features prevalent in benign apps are removed. This approach enables the machine learning model to classify repackaged malware with reasonably few false negatives and false positives. Our training pipeline is simpler than many existing ML-based malware detection methods, as the network is trained end-to-end to jointly learn appropriate features and to perform classification. We pre-trained our classifier model on 3 million apps collected from the widely-used AndroZoo dataset. 1 We perform an extensive study on other publicly available datasets to show our approach’s effectiveness in detecting repackaged malware with more than 94% accuracy, 0.98 precision, 0.95 recall, and 0.96 F1 score.more » « less
-
Software vulnerabilities in emerging systems, such as the Internet of Things (IoT), allow for multiple attack vectors that are exploited by adversaries for malicious intents. One of such vectors is malware, where limited efforts have been dedicated to IoT malware analysis, characterization, and understanding. In this paper, we analyze recent IoT malware through the lenses of static analysis. Towards this, we reverse-engineer and perform a detailed analysis of almost 2,900 IoT malware samples of eight different architectures across multiple analysis directions. We conduct string analysis, unveiling operation, unique textual characteristics, and network dependencies. Through the control flow graph analysis, we unveil unique graph-theoretic features. Through the function analysis, we address obfuscation by function approximation. We then pursue two applications based on our analysis: 1) Combining various analysis aspects, we reconstruct the infection lifecycle of various prominent malware families, and 2) using multiple classes of features obtained from our static analysis, we design a machine learning-based detection model with features that are robust and an average detection rate of 99.8%.more » « less
-
Machine Learning (ML) is a key part of modern malware detection pipelines, but its application is not straightforward. It involves multiple practical challenges that are frequently unaddressed by the literature works. A key challenge is the heterogeneity of scenarios. Antivirus (AV) companies for instance operate under different performance constraints in the backend and in the endpoint, and with a diversity of datasets according to the country they operate in. In this paper, we evaluate the impact of these heterogeneous aspects by developing a classification pipeline for 3 datasets of 10K malware samples each collected by an AV company in the USA, Brazil, and Japan in the same period. We characterize the different requirements for these datasets and we show that a different number of features is required to reach the optimal detection rate in each scenario. We show that a global model combining the three datasets increases the detection of the three individual datasets. We propose using Federated Learning (FL) to build the global model and a distilling process to generate the local versions. We order the samples temporally to show that although retraining on concept drift detection helps recover the detection rate, only a FL approach can increase the detection rate.more » « less