This paper presents our work over the last decade in developing functional microrobotic systems, which include wireless actuation of microrobots to traverse complex surfaces, addition of sensing capabilities, and independent actuation of swarms of microrobots. We will discuss our work on the design, fabrication, and testing of a number of different mobile microrobots that are able to achieve these goals. These microrobots include the microscale magnetorestrictive asymmetric bimorph microrobot ( μ MAB), our first attempt at magnetic actuation in the microscale; the microscale tumbling microrobot ( μ TUM), our microrobot capable of traversing complex surfaces in both wet and dry conditions; and the micro-force sensing magnetic microrobot ( μ FSMM), which is capable of real-time micro-force sensing feedback to the user as well as intuitive wireless actuation. Additionally, we will present our latest results on using local magnetic field actuation for independent control of multiple microrobots in the same workspace for microassembly tasks.
more »
« less
3D‐Printed Microrobots with Integrated Structural Color for Identification and Tracking
The implementation of two‐photon polymerization (TPP) in the microrobotics community has permitted the fabrication of complex 3D structures at the microscale, creating novel platforms with potential biomedical applications for minimizing procedure invasiveness and diagnosis accuracy. Although advanced functionalities for manipulation and drug delivery tasks have been explored, one remaining challenge is achieving improved visualization, identification, and accurate closed‐loop control of microscale robots. To enable this, distinguishable identifying and trackable features must be included on the microrobot. Toward this end, the construction of micro‐ and nanoscale patterns using TPP is demonstrated for the first time on microrobot surfaces with the intent of mimicking color‐expressing nanostructures present on beetles or butterflies. The patterns provide identification and tracking targets due to their vivid color expression under visible light. Helical and rectangular microrobots are designed with the topical patterns and further functionalized with magnetic materials to be externally actuated by magnetic fields. Vision‐based tracking of a 20 μm × 30 μm colored feature on a 100 μm‐long helical microrobot using a fixed angular position light source during microrobotic motion is shown. This versatile structural color patterning approach shows great potential for the visual differentiation of various microrobots and tracking for improved closed‐loop control.
more »
« less
- Award ID(s):
- 1637961
- PAR ID:
- 10155200
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Intelligent Systems
- Volume:
- 2
- Issue:
- 5
- ISSN:
- 2640-4567
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Magnetic microrobots are attractive tools for operation in confined spaces due to their small size and untethered wireless operation, particularly in biomedical and environmental applications. Over years of development, many microrobot fabrication methods have been developed; however, they typically require costly specialized physical vapor deposition (PVD) vacuum instrumentation and present homogeneity and conformality coating problems (especially in complex 3D structures). Herein, a solution‐based polydopamine (PDA)‐assisted electroless deposition method is developed to deposit a superparamagnetic nickel thin film on microrobots. The multilayered functional film design comprises PDA as an adhesive primer and reducing agent, silver nanoclusters as catalysts, and a nickel magnetic top film, all deposited in a batch solution‐based process on glass and 3D‐printed polymer substrates. This multilayer magnetic coating is implemented and demonstrated in three magnetic microrobot archetypes, including arbitrarily‐shaped active particles, microrollers, and helical swimming microrobots, each using distinct actuation working mechanisms. Due to the material‐independent interfacial adhesive properties of PDA, this multilayer functionalization strategy can open up new magnetic microrobot fabrication schemes with a broad compatibility with materials and structures (including complex 3D‐printed polymer microstructures) and without the need for and limitations of PVD coating approaches.more » « less
-
Microrobots powered by an external magnetic field could be used for sophisticated medical applications such as cell treatment, micromanipulation, and noninvasive surgery inside the body. Untethered microrobot applications can benefit from haptic technology and telecommunication, enabling telemedical micro-manipulation. Users can manipulate the microrobots with haptic feedback by interacting with the robot operating system remotely in such applications. Artificially created haptic forces based on wirelessly transmitted data and model-based guidance can aid human operators with haptic sensations while manipulating microrobots. The system presented here includes a haptic device and a magnetic tweezer system linked together using a network-based teleoperation method with motion models in fluids. The magnetic microrobots can be controlled remotely, and the haptic interactions with the remote environment can be felt in real time. A time-domain passivity controller is applied to overcome network delay and ensure stability of communication. This study develops and tests a motion model for microrobots and evaluates two image-based 3D tracking algorithms to improve tracking accuracy in various Newtonian fluids. Additionally, it demonstrates that microrobots can group together to transport multiple larger objects, move through microfluidic channels for detailed tasks, and use a novel method for disassembly, greatly expanding their range of use in microscale operations. Remote medical treatment in multiple locations, remote delivery of medication without the need for physical penetration of the skin, and remotely controlled cell manipulations are some of the possible uses of the proposed technology.more » « less
-
Tracking microrobots is challenging due to their minute size and high speed. In biomedical applications, this challenge is exacerbated by the dense surrounding environments with feature sizes and shapes comparable to microrobots. Herein, Motion Enhanced Multi‐level Tracker (MEMTrack) is introduced for detecting and tracking microrobots in dense and low‐contrast environments. Informed by the physics of microrobot motion, synthetic motion features for deep learning‐based object detection and a modified Simple Online and Real‐time Tracking (SORT)algorithm with interpolation are used for tracking. MEMTrack is trained and tested using bacterial micromotors in collagen (tissue phantom), achieving precision and recall of 76% and 51%, respectively. Compared to the state‐of‐the‐art baseline models, MEMTrack provides a minimum of 2.6‐fold higher precision with a reasonably high recall. MEMTrack's generalizability to unseen (aqueous) media and its versatility in tracking microrobots of different shapes, sizes, and motion characteristics are shown. Finally, it is shown that MEMTrack localizes objects with a root‐mean‐square error of less than 1.84 μm and quantifies the average speed of all tested systems with no statistically significant difference from the laboriously produced manual tracking data. MEMTrack significantly advances microrobot localization and tracking in dense and low‐contrast settings and can impact fundamental and translational microrobotic research.more » « less
-
Mobile microrobots have the potential to transform medical treatments based on therapeutic delivery. Specifically, microrobots are promising candidates for cell transportation in cell-based therapies. Despite recent progress in cellular manipulation by microrobots, there is a significant need to design and fabricate microrobots to advance the field further. In this work, we present a facile approach to manufacturing three-lobed microrobots by a bench-top procedure. The microrobots are actuated by a harmless magnetic field which makes them biofriendly. Chemically, these microrobots are made of organosilica. The microrobots showed equally good control in both the open-loop and closed-loop settings. The three-lobed microrobots have two modes of motion during the open-loop control experiments. We employed these two modes for single-cell transportation. Our results show that the three-lobed microbots are very promising for cell transportation in a fluid.more » « less
An official website of the United States government
