skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 30, 2026

Title: Polydopamine‐Assisted Electroless Deposition of Magnetic Functional Coatings for 3D‐Printed Microrobots
Magnetic microrobots are attractive tools for operation in confined spaces due to their small size and untethered wireless operation, particularly in biomedical and environmental applications. Over years of development, many microrobot fabrication methods have been developed; however, they typically require costly specialized physical vapor deposition (PVD) vacuum instrumentation and present homogeneity and conformality coating problems (especially in complex 3D structures). Herein, a solution‐based polydopamine (PDA)‐assisted electroless deposition method is developed to deposit a superparamagnetic nickel thin film on microrobots. The multilayered functional film design comprises PDA as an adhesive primer and reducing agent, silver nanoclusters as catalysts, and a nickel magnetic top film, all deposited in a batch solution‐based process on glass and 3D‐printed polymer substrates. This multilayer magnetic coating is implemented and demonstrated in three magnetic microrobot archetypes, including arbitrarily‐shaped active particles, microrollers, and helical swimming microrobots, each using distinct actuation working mechanisms. Due to the material‐independent interfacial adhesive properties of PDA, this multilayer functionalization strategy can open up new magnetic microrobot fabrication schemes with a broad compatibility with materials and structures (including complex 3D‐printed polymer microstructures) and without the need for and limitations of PVD coating approaches.  more » « less
Award ID(s):
2309029
PAR ID:
10596650
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Wiley-VCH GmbH
Date Published:
Journal Name:
Advanced Intelligent Systems
ISSN:
2640-4567
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Silver (Ag) is widely used for antimicrobial textiles due to its strong biocidal activity, but conventional Ag coating methods are often expensive and involve complex processing steps. In this study, we present a simple, solution‐based approach using polydopamine (PDA)‐assisted electroless Ag plating, which enables uniform Ag deposition on textiles with improved scalability. We systematically investigate the effects of pH, temperature, and oxygen concentration on the growth kinetics of Ag nanoparticles (NPs) during PDA‐assisted electroless Ag plating. Results show that elevated temperature (65°C), alkaline solution (pH = 10), and increased oxygen purging (50 sccm) each significantly accelerates Ag NP deposition, with coverage up to 56.69% and particle sizes up to 69.48 ± 14.89 nm. Optical and structural analyses confirmed enhanced PDA deposition as the key to expediting Ag NP growth on various textiles. Using this accelerated process, we developed a cost‐effective, 3D‐printed roll‐to‐roll system to scale up fabrication, achieving rapid and uniform Ag NP deposition. The resulting textiles exhibited superior antimicrobial properties, offering an affordable and effective solution for high‐performance hygiene applications. 
    more » « less
  2. Abstract A magnetic object subject to an external rotating magnetic field would be rotated due to the alignment tendency between its internal magnetization and the field. Based on this principle, 12 shapes of swimming microrobots around 1 mm long were designed and 3D-printed using biodegradable materials Poly (ethylene glycol) diacrylate (PEDGA). Their surface was decorated with superparamagnetic iron oxide nanoparticles to provide magnetic responsivity. An array of 12 permanent magnets generated a rotating uniform magnetic field (∼100 mT) to impose magnetic torque, which induces a tumbling motion in the microrobot. We developed a dynamic model that captured the behavior of swimming microrobots of different shapes and showed good agreement with experimental results. Among these 12 shapes, we found that microrobots with equal length, width, and depth performed better. The observed translational speed of the hollow cube microrobot can exceed 17.84 mm s −1 (17.84 body lengths/s) under a rotating magnetic field of 5.26 Hz. These microrobots could swim to the targeted sites in a simplified vessel branch. And a finite element model was created to simulate the motion of the swimming microrobot under a flow rate of 0.062 m s −1 . 
    more » « less
  3. The implementation of two‐photon polymerization (TPP) in the microrobotics community has permitted the fabrication of complex 3D structures at the microscale, creating novel platforms with potential biomedical applications for minimizing procedure invasiveness and diagnosis accuracy. Although advanced functionalities for manipulation and drug delivery tasks have been explored, one remaining challenge is achieving improved visualization, identification, and accurate closed‐loop control of microscale robots. To enable this, distinguishable identifying and trackable features must be included on the microrobot. Toward this end, the construction of micro‐ and nanoscale patterns using TPP is demonstrated for the first time on microrobot surfaces with the intent of mimicking color‐expressing nanostructures present on beetles or butterflies. The patterns provide identification and tracking targets due to their vivid color expression under visible light. Helical and rectangular microrobots are designed with the topical patterns and further functionalized with magnetic materials to be externally actuated by magnetic fields. Vision‐based tracking of a 20 μm × 30 μm colored feature on a 100 μm‐long helical microrobot using a fixed angular position light source during microrobotic motion is shown. This versatile structural color patterning approach shows great potential for the visual differentiation of various microrobots and tracking for improved closed‐loop control. 
    more » « less
  4. This paper presents our work over the last decade in developing functional microrobotic systems, which include wireless actuation of microrobots to traverse complex surfaces, addition of sensing capabilities, and independent actuation of swarms of microrobots. We will discuss our work on the design, fabrication, and testing of a number of different mobile microrobots that are able to achieve these goals. These microrobots include the microscale magnetorestrictive asymmetric bimorph microrobot ( μ MAB), our first attempt at magnetic actuation in the microscale; the microscale tumbling microrobot ( μ TUM), our microrobot capable of traversing complex surfaces in both wet and dry conditions; and the micro-force sensing magnetic microrobot ( μ FSMM), which is capable of real-time micro-force sensing feedback to the user as well as intuitive wireless actuation. Additionally, we will present our latest results on using local magnetic field actuation for independent control of multiple microrobots in the same workspace for microassembly tasks. 
    more » « less
  5. Abstract Structural color printings have broad applications due to their advantages of long-term sustainability, eco-friendly manufacturing, and ultra-high resolution. However, most of them require costly and time-consuming fabrication processes from nanolithography to vacuum deposition and etching. Here, we demonstrate a new color printing technology based on polymer-assisted photochemical metal deposition (PPD), a room temperature, ambient, and additive manufacturing process without requiring heating, vacuum deposition or etching. The PPD-printed silver films comprise densely aggregated silver nanoparticles filled with a small amount (estimated <20% volume) of polymers, producing a smooth surface (roughness 2.5 nm) even better than vacuum-deposited silver films (roughness 2.8 nm) at ~4 nm thickness. Further, the printed composite films have a much larger effective refractive indexn(~1.90) and a smaller extinction coefficientk(~0.92) than PVD ones in the visible wavelength range (400 to 800 nm), therefore modulating the surface reflection and the phase accumulation. The capability of PPD in printing both ultra-thin (~5 nm) composite films and highly reflective thicker film greatly benefit the design and construction of multilayered Fabry–Perot (FP) cavity structures to exhibit vivid and saturated colors. We demonstrated programmed printing of complex pictures of different color schemes at a high spatial resolution of ~6.5 μm by three-dimensionally modulating the top composite film geometries and dielectric spacer thicknesses (75 to 200 nm). Finally, PPD-based color picture printing is demonstrated on a wide range of substrates, including glass, PDMS, and plastic, proving its broad potential in future applications from security labeling to color displays. 
    more » « less