The ability of cells to maintain a constant level of cytoskeletal tension in response to external and internal disturbances is referred to as tensional homeostasis. It is essential for the normal physiological function of cells and tissues, and for protection against disease progression, including atherosclerosis and cancer. In previous studies, we defined tensional homeostasis as the ability of cells to maintain a consistent level of cytoskeletal tension with low temporal fluctuations. In those studies, we measured temporal fluctuations of cell-substrate traction forces in clusters of endothelial cells and of fibroblasts. We observed those temporal fluctuations to decrease with increasing cluster size in endothelial cells, but not in fibroblasts. We quantified temporal fluctuation, and thus homeostasis, through the coefficient of variation (CV) of the traction field; the lower the value of CV, the closer the cell is to the state of tensional homeostasis. This metric depends on correlation between individual traction forces. In this study, we analyzed the contribution of correlation between traction forces on traction field CV in clusters of endothelial cells and fibroblasts using experimental data that we had obtained previously. Results of our analysis showed that positive correlation between traction forces was detrimental to homeostasis, and that it was cell type-dependent.
more »
« less
As the endothelial cell reorients, its tensile forces stabilize
When adherent cells are subjected to uniaxial sinusoidal stretch at frequencies close to physiological, their body and their contractile stress fibers realign nearly perpendicularly to the stretch axis. A common explanation for this phenomenon is that stress fibers reorient along the direction where they are unaffected by the applied cyclic stretch and thus can maintain optimal (homeostatic) tensile force. The ability of cells to achieve tensional homeostasis in response to external disturbances is important for normal physiological functions of cells and tissues and it provides protection against diseases, including cancer and atherosclerosis. However, quantitative experimental data that support the idea that stretch-induced reorientation is associated with tensional homeostasis are lacking. We observed previously that in response to uniaxial cyclic stretch of 10% strain amplitudes, traction forces of single endothelial cells reorient in the direction perpendicular to the stretch axis. Here we carried out a secondary analysis of those data to investigate whether this reorientation of traction forces is associated with tensional homeostasis. Our analysis showed that stretch-induced reorientation of traction forces was accompanied by attenuation of temporal variability of the traction field to the level that was observed in the absence of stretch. These findings represent a quantitative experimental evidence that stretch-induced reorientation of the cell’s traction forces is associated with the cell’s tendency to achieve tensional homeostasis.
more »
« less
- Award ID(s):
- 1910401
- PAR ID:
- 10155255
- Date Published:
- Journal Name:
- Journal of biomechanics
- Volume:
- 105
- ISSN:
- 0021-9290
- Page Range / eLocation ID:
- 109770
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In epithelia, breakdown of tensional homeostasis is closely associated with E-cadherin dysfunction and disruption of tissue function and integrity. In this study, we investigated the effect of E-cadherin mutations affecting distinct protein domains on tensional homeostasis of gastric cancer cells. We used micropattern traction microscopy to measure temporal fluctuations of cellular traction forces in AGS cells transfected with the wild-type E-cadherin or with variants affecting the extracellular, the juxtamembrane, and the intracellular domains of the protein. We focused on the dynamic aspect of tensional homeostasis, namely the ability of cells to maintain a consistent level of tension, with low temporal variability around a set point. Cells were cultured on hydrogels micropatterned with different extracellular matrix (ECM) proteins to test whether the ECM adhesion impacts cell behavior. A combination of Fibronectin and Vitronectin was used as a substrate that promotes the adhesive ability of E-cadherin dysfunctional cells, whereas Collagen VI was used to test an unfavorable ECM condition. Our results showed that mutations affecting distinct E-cadherin domains influenced differently cell tensional homeostasis, and pinpointed the juxtamembrane and intracellular regions of E-cadherin as the key players in this process. Furthermore, Fibronectin and Vitronectin might modulate cancer cell behavior towards tensional homeostasis.more » « less
-
Tensional homeostasis is a phenomenon of fundamental importance in mechanobiology. It refers to the ability of organs, tissues, and cells to respond to external disturbances by maintaining a homeostatic (set point) level of mechanical stress (tension). It is well documented that breakdown in tensional homeostasis is the hallmark of progression of diseases, including cancer and atherosclerosis. In this review, we surveyed quantitative studies of tensional homeostasis with the goal of providing characterization of this phenomenon across a broad range of length scales, from the organ level to the subcellular level. We considered both static and dynamics approaches that have been used in studies of this phenomenon. Results that we found in the literature and that we obtained from our own investigations suggest that tensional homeostasis is an emergent phenomenon driven by collective rheostatic mechanisms associated with focal adhesions, and by a collective action of cells in multicellular forms, whose impact on tensional homeostasis is cell type-dependent and cell microenvironment-dependent. Additionally, the finding that cadherins, adhesion molecules that are important for formation of cell–cell junctions, promote tensional homeostasis even in single cells, demonstrates their relevance as a signaling moiety.more » « less
-
Cellular traction forces that are dependent on actin-myosin activity are necessary for numerous developmental and physiological processes. As traction force emerges as a promising cancer biomarker there is a growing need to understand force generation in response to chemical and mechanical cues. Our goal is to present a unified modeling framework that integrates actin-myosin activity, substrate stiffness, integrin bond type, and adhesion complex dynamics to explain how force develops under specific conditions. Our simulation results show that substrate stiffness and number of myosin motors contribute to the maximum actin-myosin forces that can be generated but do not solely control the force transmitted by the cells to the surface, i.e., the traction force. The kinetics of the bonds between the cell and the substrate plays an equally important role. Overall, we find that while the cell can generate large actin-myosin forces in individual stress fibers ( > 300 pN), the maximum force transmitted to the surface per cell-substrate attachment only reaches a fraction of these values (approx. 50 pN). Traction stress, the sum of forces transferred by all cell-substrate attachments in a unit area, is biphasic or sigmoidal with increasing substrate stiffness depending on the number of active myosin motors generating forces. Finally, we conclude that adhesions < 1 μm 2 generate widely variable traction forces and that impulse, the magnitude and duration of a force generating event, is a key limiting factor in traction stress.more » « less
-
Abstract The epithelial microenvironment is incredibly dynamic, subjected to mechanical cues including cyclic stretch. While cyclic cell stretching platforms have revealed epithelial cell reorientation and gap formation, few studies have investigated the long-term effects of cyclic stretch on cell migration. We measured the migratory response of the epithelium to a range of physiologically relevant frequencies and stretch. Our results indicate that lower stretch frequencies (i.e., 0.1 Hz) suppress epithelial migration, accompanied by cell reorientation and high cell shape solidity. We found that this response is also accompanied by increased recruitment of vinculin to cell-cell contacts, and this recruitment is necessary to suppress cell movements. These results confirm the mechanosensitive nature of vinculin within the adherens junction, but independently reveal a novel mechanism of low frequency stress response in supporting epithelial integrity by suppressing cell migration.more » « less
An official website of the United States government

