In this paper we study the critical properties of the Heisenberg spin-1/2model on a comb lattice --- a 1D backbone decorated with finite 1D chains --the teeth. We address the problem numerically by a comb tensor network thatduplicates the geometry of a lattice. We observe a fundamental difference betweenthe states on a comb with even and odd number of sites per tooth, whichresembles an even-odd effect in spin-1/2 ladders. The comb with odd teeth isalways critical, not only along the teeth, but also along the backbone, whichleads to a competition between two critical regimes in orthogonal directions.In addition, we show that in a weak-backbone limit the excitation energy scales as1/(NL), and not as 1/N or 1/L typical for 1D systems. For even teeth in theweak backbone limit the system corresponds to a collection of decoupledcritical chains of length L, while in the strong backbone limit, one spin from eachtooth forms the backbone, so the effective length of a critical toothis one site shorter, L-1. Surprisingly, these two regimes are connected via astate where a critical chain spans over two nearest neighbor teeth, with an effectivelength 2L.
more »
« less
Comb Tensor Networks
In this paper we propose a special type of a tree tensor network that has the geometry of a comb—a one-dimensional (1D) backbone with finite 1D teeth projecting out from it. This tensor network is designed to provide an effective description of higher-dimensional objects with special limited interactions or, alternatively, one-dimensional systems composed of complicated zero-dimensional objects. We provide details on the best numerical procedures for the proposed network, including an algorithm for variational optimization of the wave function as a comb tensor network and the transformation of the comb into a matrix product state. We compare the complexity of using a comb versus alternative matrix product state representations using density matrix renormalization group algorithms. As an application, we study a spin-1 Heisenberg model system which has a comb geometry. In the case where the ends of the teeth are terminated by spin-1/2 spins, we find that Haldane edge states of the teeth along the backbone form a critical spin-1/2 chain, whose properties can be tuned by the coupling constant along the backbone. By adding next-nearest-neighbor interactions along the backbone, the comb can be brought into a gapped phase with a long-range dimerization along the backbone. The critical and dimerized phases are separated by a Kosterlitz-Thouless phase transition, the presence of which we confirm numerically. Finally, we show that when the teeth contain an odd number of spins and are not terminated by spin-1/2's, a special type of comb edge states emerge.
more »
« less
- Award ID(s):
- 1812558
- PAR ID:
- 10155591
- Date Published:
- Journal Name:
- Physical review
- Volume:
- 99
- ISSN:
- 1550-235X
- Page Range / eLocation ID:
- 235426
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The boundary modes of topological insulators are protected by the symmetries of the nontrivial bulk electronic states. Unless these symmetries are broken, they can give rise to novel phenomena, such as the quantum spin Hall effect in one-dimensional (1D) topological edge states, where quasiparticle backscattering is suppressed by time-reversal symmetry (TRS). Here, we investigate the properties of the 1D topological edge state of bismuth in the absence of TRS, where backscattering is predicted to occur. Using spectroscopic imaging and spin-polarized measurements with a scanning tunneling microscope, we compared quasiparticle interference (QPI) occurring in the edge state of a pristine bismuth bilayer with that occurring in the edge state of a bilayer, which is terminated by ferromagnetic iron clusters that break TRS. Our experiments on the decorated bilayer edge reveal an additional QPI branch, which can be associated with spin-flip scattering across the Brioullin zone center between time-reversal band partners. The observed QPI characteristics exactly match with theoretical expectations for a topological edge state, having one Kramer’s pair of bands. Together, our results provide further evidence for the nontrivial nature of bismuth and in particular, demonstrate backscattering inside a helical topological edge state induced by broken TRS through local magnetism.more » « less
-
We discuss the exact non-invertible Kramers-Wannier symmetry of 1+1d lattice models on a tensor product Hilbert space of qubits. This symmetry is associated with a topological defect and a conserved operator, and the latter can be presented as a matrix product operator. Importantly, unlike its continuum counterpart, the symmetry algebra involves lattice translations. Consequently, it is not described by a fusion category. In the presence of this defect, the symmetry algebra involving parity/time-reversal is realized projectively, which is reminiscent of an anomaly. Different Hamiltonians with the same lattice non-invertible symmetry can flow in their continuum limits to infinitely many different fusion categories (with different Frobenius-Schur indicators), including, as a special case, the Ising CFT. The non-invertible symmetry leads to a constraint similar to that of Lieb-Schultz-Mattis, implying that the system cannot have a unique gapped ground state. It is either in a gapless phase or in a gapped phase with three (or a multiple of three) ground states, associated with the spontaneous breaking of the lattice non-invertible symmetry.more » « less
-
The study of low-dimensional quantum systems has proven to be a particularly fertile field for discovering novel types of quantum matter. When studied numerically, low-energy states of low-dimensional quantum systems are often approximated via a tensor-network description. The tensor network's utility in studying short range correlated states in 1D have been thoroughly investigated, with numerous examples where the treatment is essentially exact. Yet, despite the large number of works investigating these networks and their relations to physical models, examples of exact correspondence between the ground state of a quantum critical system and an appropriate scale-invariant tensor network have eluded us so far. Here we show that the features of the quantum-critical Motzkin model can be faithfully captured by an analytic tensor network that exactly represents the ground state of the physical Hamiltonian. In particular, our network offers a two-dimensional representation of this state by a correspondence between walks and a type of tiling of a square lattice. We discuss connections to renormalization and holography.more » « less
-
Abstract 167 Er 3+ doped solids are a promising platform for quantum technology due to erbium’s telecom C-band optical transition and its long hyperfine coherence times. We experimentally study the spin Hamiltonian and dynamics of 167 Er 3+ spins in Y 2 O 3 using electron paramagnetic resonance (EPR) spectroscopy. The anisotropic electron Zeeman, hyperfine and nuclear quadrupole matrices are fitted using data obtained by X-band (9.5 GHz) EPR spectroscopy. We perform pulsed EPR spectroscopy to measure spin relaxation time T 1 and coherence time T 2 for the 3 principal axes of an anisotropic g tensor. Long electronic spin coherence time up to 24.4 μ s is measured for lowest g transition at 4 K, exceeding previously reported values at much lower temperatures. Measurements of decoherence mechanism indicates T 2 limited by spectral diffusion and instantaneous diffusion. Long spin coherence times, along with a strong anisotropic hyperfine interaction makes 167 Er 3+ :Y 2 O 3 a rich system and an excellent candidate for spin-based quantum technologies.more » « less
An official website of the United States government

